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PREFACE

One oif the major findings in the ACiAR) Flight Mechanics Panel iI-MP) AGARI~igraph No.279. "SurveN of Missile
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rnajoritN of facilities %% ere any established oir formal procedures for accomplishing any level of sintulation model s alidat ion."
The AC ARI) FM P felt this ommissioni siarramited further action and subseqlUently recomimenmded the formatioin of Working
Group 12. 'Validlation of Missile Sstsei Simulation".

Once approved by the AGiARI) National D~elegates. Working Group 1 2 held four meetings over the 198)2- I 984 time
period as follows: (al 21I October I1982. London. Lngland: (b) 5 -6,May 983. Minelmen. West Germany: (c ) 24-26
October 1 983. Lglin AF13 FL.. USA. and finally (d) 27-29) March 1 984, Paris. Frantce.

Trhis report dimeume:nts the wiirking group findings.T'Ihe working group consisting omf Mr M.J.lDouat. France: Mr Werner
Bhub. Germany: Mr Klaus flausel. Germnany: Mr Karl F'rnst Plait. Germany: Mtr Amilcare (ianina Italb: Mr 13I~attstall.
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1. INTRODUCTION

The AGARD Flight Mechanics Panel (FMP) has been concerned with the
problem of missile simulation in general, and cooperative NATO

developments of missile system simulations, test, and evaluation as
related to missile system fligbt mechanics in particular. As a result,
the FMP sponsored a survey of missile simulation facilities reported in
AGAPDograph No. 279, "Survey of Missile Simulation and Flight Mechanics
in NATO," by Willard M. Holmes, April 19F3. One of the key findings In

this survey was that very little effort is being expended In missile
simulation validation. Furthermore, validation technlaues themselves
are generally not standard; often being ill-defined or undocumented.

This fact motivated the formation of FMP VorkIng Croup 12,
"Validation of Missile Svster Simulation." This report documents the
group findings.

Although there is no shortage of reference mater i al on missile
simulations per se, there seems to be no "history" on the subiect, like
the manned simulation community, (e.g., The Pilot Maker, by Flovd 1..
Kelly as told to Robert B. Parks, Grosset and Dunlap, ])70). The manned

simulation world, founded first in training simulators and later in
research ano development simulators, is also just now realizing the need
for simulation validetion.

Perhaps, in both cases, the evolution of simulation equipment from
extremely crude mechanical devices to modern electronic "arcade game

simulators" happened so fast that it is only recentli, that people began
to ask, "Do they really work'? Or, perhaps the early equipment
reliability problems were such that everyone was quite happy if the
simulatirr appeared to be "working", let alone providing "useful"
results.

In anrv event, times have changed, and in both manned aircraft
simulations and missile simulations the question of validation is
becoming of more end more serious concern.

But where does ore start in terms of defining how to validate
missile simulations when few organizations do any formal validation now
and there are no agreed upon standards whatsoever? This was the

etremely broad and difficult question the working group h-d to

repeatedly ask itself.

After a number of fa!lse starts, the working group concluded that

the most important objective was to find a "method" or organizing
simulation validation techniques rather than a collection of actual

methods. In addltion, the concept of "confidence" 1ii missile
simulations began to play a dominant role in the group thinking from the
-cry start of the activitv. That is, the purpose of the validation was

as important as, or perhaps more important than, the methods themselves.
In additlon, many of the thoughts on validation methods seemed much

easier to organize if one thought in terms of developing confidence In
the behavior of a simulated model. Therefore, a perlps larger portion
of the group effort was expended on a hierarchical model representation

,: - - I i |



of Confidence Level in Model Behavior (CIMB) that included documenta-
tion that is integral to the total process to insure "confidence" in the
final result. In fact, this documentation may instill more confidence
than originally envisioned. This "organization of thought" provides one
of the major portions of the group final results.

The remainder of this report is organized as follows. A
Terminology Section is provided to Include some fundamental definitions.
.hile not intended to be "final", this section presents a good start on
a standard set of terms. The next section on the CLIMB process forms
the heart of this report and is by far the most important contribution
the group could provide within the time span available. Popefully, this
section will form a basis for further work in the area plus a
stand-alone start toward a unified approach to missile system simulation
validation.

The next section on Computer Languages could also be a separate
working group topic, being only touched upon her6.

Next, a brief section on Software Validation/Verification/
Assessment Methods follows. This section could easily be the founaation
of a working group report by itself, but this task was clearly beyond
the two-year effort of the present activity.

Finally, overall recommendations are presented. As might be
expected, the extremely difficult subject has led to a number of
suggested follow-on activities for FMP consideration.

Throughout the working group activity, the members were extremely
conscientious and devoted to their task. Each meeting generated a mound
of documentation to be shared by the other members prior to the next
meeting. These notes, or "homework", are too voluminous to reproduce
here, however, the information was invaluable in the development of this
final report and in forming the thoughts of each group member. The
members themselves represented one of the most professional groups rhe
Chairman has ever been associated with, and hopefully this final report
reflects this fact. If not, the problem was the sheer complexity and
difficulty associated with the workinF group task an not the quality
and enthusiasm of the members themselves.
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II. THFMINOLOCY
2.1 IHTTRODITCTION

The following general terminology was adopted by the working group.
This terminology is a somewhat modified version of the list that appear

in the March 1979 issue of SIMULATTON:

To provide a propei framework tc review the credibility of a
simulation, it is convenient to divide the simulation environment into
three basic elements as depicted in Figure 2-1. The inner arrows

describe the processes which relate the elements to each other and the
outer arrow-: refer to the procedures which evaluate the credibility of
these processes. This basic pictorial concept can be further refined as
shown in Figure 2-2:

Each of the basic elements and their interrelationships are dealt with

in the following set of definitiors:

2.2 DESCRIPTION OF TERMINOLOGY

MISSILE SIMULATION All analytical, digital computer,

hybrid computer, or
hardware-in-tbe-loop dynamic
evaluations of tactical missiles to
pain insight about rpality

MODEL. DOCUMENTATIO" Systematic and coherent written and

grapbical representation of the
associated data base according to P
specified format and with a specific
purpose

REAL1'v An entity, situation, or system vhich
has been selected for analysis

(CNCEPTUAL MODF. Model 1-uilder's perception and

understanding of tHie Fystem to be
simulated. It consists of a
hypothetical complete explanation of
how the system functions. It often
rakes the form of verbal description,
complemented by block diagrams, flow
charts and systems specifications.

in most cases, the large complexity

of the conceptual model rrecludes its
consideration as a possible

simulptlon model. In view of the
requirements of the intended
simulation studies, the modeler
establishes the complexitv of the

simulation model and degree of detail

necessary. This information,
generally In .lescriptive (verbal)

form, complemented by block diagrams
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and flow charts constitutes the
Conceptual Simulation Model or

abbreviated to Conceptual Model. At
the same tinte, this represents the
requirements on the formal simulation
iondel

The formal model provides the
technical description of the
simulation model. Tt takes the form
of mathematical equations, adequate

description of logic flow and model
data, complemented by the npcessary
detailed text. obth the conceptual
and the formal model togethcr form
the theoretical model

DOMAIN 01' INTENDED APPLICATION Prescribed conditions for which the
(OF CONCEPTUAL MODEL) CONCEPTUAL MODEL is intended to match

REALITY

LEVEL OF AGREEMENT Expected agreement between the
(OF CONCEPTUAL MODEL) CONCEPTUAl. MODEL and RFALITY,

consistent with the DOMAIN OF
INTENDED APPLICATION and the purpose
for which the model was built

MUPEI. OUALIFICATION Determination of adequacy of the
CONCEPTUAl. MODEL to provide sn
acceptable L1EVEL OF AGREEMENT for thr-
DOMAIN OF INTFNDED APPLICATION

This may involve a compariscn o f
alternate methods of missile
simulation to establish credibility

with two or more independent data
sets or results

COMPUTERIZED MODEL A operational computer program wl,ich
implements v CONCEPTUAL MODEL

MODEL VERIFICATION The process of showing that t1

proposed conceptual and the
associated formal model are an
adequate and consistent
representation of the system to be

simulated, all in view of the
intended application. The method

used is basically expert crtique,
which makes use of expertise and past

experience In order to assess the

adequacy o" the conceptual model and
the derivation of the formal model.
Suitable documentation should allow



following and understanding the ideas
of the mode] builder in deriving the

theoretical model

DOMAIN OF APPLICABILITY Prescribed conditions for which the
(OF COMPUTERIZED MODEL) COMPUTERIZEP MODEL has been tested,

compared against REALITY to the
extent possible, and judged suitable
for use (by MODEL VALIDATION, as
described below)

RANGE OF ACCURACY Demonstrated agreement between the

(OF COMPUTERIZED MODEL) COMPUTERIZEP MODEL and REALITY within

a stipulated DOMAIN OF APPLICABILITY
IMPLEMENTATION The process of programming the formal

model on an adequate computer. It is

recommended to apply software

engineering methods such as top-down

design, structured programming,
top-down implementation and testing,

etc.

PROCPAM VERIFICATION The process of demonstrating that the

formal model has been correctly
implemented on the computer. This
includes source code inspections,
code walk throughs and tests of the

model behavior predicted on the basis
of the theoretical model (analytical

solutions, behavior for small
signals, etc.)

MODEL VALIDATION The process of demonstrating through

objective testing that the

theoretical model and its
implementation form an adequate

representation of the system to be
simulated, judged In view of the

intended application. Model
generated output data are being
compared against actual data obtained
by experiments performed on the real
system

ASSFSSMENT The process of epplving subjective

Judgment (i.e., expert opinion) to
arrive at conclulsions concerning the
adequacy of the missile design,
hardware, simulations

(hardware-in-the-loop and
mathematical), and testing



CERTIFICATION DOCUMENTATION Documentation to communicarp
information concerning a model's

credibility and applicability,
containing, as a minimum, the

following basic elements:

(1) Statement of purpose for which

the model has been built

(2) Verbal and/or analytical
description of the CONCFPTUAL MODEL
and COMPUTERIZED MODEl.

(3) Specification of the DOMAIN OF

APPLICABILITY and RANGE OF ACCURACY

related to the purpose for which the
model is intended

(4) Description of tests used for

MODEL VERIFICATION AND MODEL
VALIDATION and a discussion of their

adequacy

MODEL CERTIFICATION Acceptance by the model user of the

CERTIFICATION DOCUMENTATION as
adequate evidence that the
COMPUTERIZED MODEL can be effectively

utilized for a specific application



TII. COt'IDENCII lVFL IN MODTl7. BEtEAVIOF1 (C IMB)

3. INTRODUCTION

CLTMB (Confidence Levels In Model Behavior) is o five level
hierarchica' process for representing information about a model such
that a thirc; Farty user can readily develop confidence in the model's
behavior. The casual observer of the tormat for Cl.IMB process may
conclude that this is a special but comprehensive documentation
procedure. However, a closer look by the rore than casual observer
interested in siumlation model development will recognize a bierbrchical
data representation structure for achieving a specific purpose. A
closer examination of CLIMB reveals that a type of knowledge bai- is
specified. This knowledge base serves as a guide for producing
information and simulation model generated data required to develop
confidence in the model's ability tc achieve the intended purpose.

The terr "knowledge base" as used here includes two components:
facts about the dor:ain of intended applicatien and heuristics or rbles
of thumb for solving problems in the domain of interest. An example of
the facts associated with a particular model might include the
differential ecuations describing the dynamics of the modeled process.
Also, textbooks and journals provide widelv shared facts generally
accepted by simulation modelers. Heuristics, on the other hand, are
"educated guesses" or rules of good practice acouired by the experienced
modeler over years of experience in developing and implementing
simulation models. These educated guesses Pre what the experienced
redel developer uses as a guide in making many decisions during the
model development process. Due to oversight and many other reasons,
seldom if ever are the heuristics of the modeler reported for a
particular model eevelopment. This results in an inadequate knowledge
base for establisbing mode: credibiltN. All experienced or expert
model developers have their own "rules of thumb" for solving particular
simulation design and modeling problens. Civen sevetal equal viable
clolces that may be available to the modeler, his rules of thumb will
influence a particular choice in establishing the basic structure cf the
model. Assumptions made in developing and implementing the model
reflect the heuristics of the modeler, as well as assumptions made about
the domain of intended application. Establishing credibility with
second and third party users of a model requires that more than just the
facts about a model be reported. In addition, relevant heuristics used
by the modeler must also be captured, i.e., a knowledge base must be
available and in a usable form.

t major element in developing model credibility Is the assumptions
made by expert modelers related to model verification and validation. A
rissile model that is validated by going from an analvtical model to
flight test data does not have the same level of credibility as a model
that was validated using intermediate stages of sub-system testing and
model validation combined with hardware-in-the-lo-op operation. This
assumption appears to be made about the hardware-in-the-loop cption,
even if the number of real world flight tests are less than the flights
with the analytical model option. If this is a tule of thumb of a



modeler, this will more than like]\ influence the structure o' tho
system and subsystem models and the data recorded from the validatio
tests.

The CLIMB process, as describea here, can be viewed as a process
for capturing knowledge about a model sufficient to develop levels ol
confidence in the behavior of the model in question for a particular
domain of application. In addition, CLIMB functions as a practical

hierarchical knowledge structure for identifying model operatio, using
at least three components: (1) documentation format, (2) knowledge
base requirements and 0) a guide for simulation model development ror
generating results conducive to increasing confidence in model
performance. Ien good model development practices are used, th? CLIMB
process captures that portion of the knowledge base available during
model development and validation efforts. Using this approach, CLITB
does not restrict the choices of the model developer, but specifies what
knowledge should be recorded once choices are made. This includes all
stages of model development and validation typically associated with
missile system development. These stages include: (1) the analytical
model, (2) subsystem testing and model validation, (3) hardware-in-the-
loop operation and (4) testing of the real world system with model

updates and validotion.

3.2 BACKGROUND ON THE DEVELOPNENT OF CLIME

Results from a study of 24 major simulation facilities in five
member nations in the NATO community (Ref 1) established the need for a
procedure that would serve as a guide for developing confidence in
simulation models. Interviews with facility managers, model developers,
and simulatlonist during on-site visits identified at least three
elements that must be included in any effective procedure for developing
confidence in simulation model behavior. The elements are l(cntified
as: (1) documentation guide and format, (2) a structure for representing
domain specific knowledges and, (3) a guide for generating simulation

model data bases appropriate for building confidence in the model's

behavior.

Documentation determines the life, death, duration, and quality of
a model's existence. Results from the referenced study revealed that
the largest and most active simulation facilities had little or no
guidelines for documenting the simulation model development and
validation efforts. In some instances, military specifications were
used to meet documentation requirements. For the most part, model
developers were left to choose what was to be documented and how it was

to be recorded.

Reviewing model documentation reports generated from different
departments within the same organization did not instill confidence in
completeness or usability of the contents. The general view of
documentation as derived from this study can be depicted as shown in
Figure 3.1. Bits and pieces of data are acquired during and after the
model developmer* effort and put together as a documented data base for



the model. The data, freouentlv with missing critical information, iF
assembled through a process that results in a multi-volume set of
documents. All too frequently, this dazzling arra,, of paper, charts,
and graphs lerd little or no motivation to potential users to r-ake a
serious Icok at the model. A conclusion from this observation is that
documentation should be an integral part of the model development
process.

Model validation techniques were not used in any systematic fashion
in a vast maiority of the facilities surveyed. In a few facilities, the
approach was to attack the model at all levels using numerous methods
and techniques to correlate the simulation results. Other validation
efforts attempted to apply specific techniques ro particular parts of
the model. The spectrum of validation efforts can be viewed as using
the random tool box approach ir' accomplisling model validation as
depicted in Figure 3.2. Here, validation is mostly considered an
operation that takes place after the model is designed and developed
using uhatever tools that are teadily available.

Results from interviews conducted during this study indicate that
in practice, a hierarchy of validation methods are used for confidence
building in simulation models. The methods mcst frequently used are
1I) expert opinions, (2) data plots with overlays, and (3) charts and
graphs with mathematical analysis techniques. The vast ma~orltv of
responses to the question "What procedure do you use tc validate your
simulation models"? was to execute and change the model until thcre was

a "Good Feeling" about the model. How is this "Good Fee]ing"
communicated to a second or third party? The typical response was that
the interested party must exercise and change the model and compprc data
with various sources, just at the developer did to uncerstand and gain
insight into the model behavior.

A second conclusion from this study is that expert opinions, data
plots, and mathematical analyses are important methodologies, but are
rnot the main issues to be addressed in developing confidence ii,
simulation models. These results indicate that the basic issues are the
nature of the model and real world data bases. The model either
represents a theoretical system or a real world system. The real world

system is associated with laboratory test data, hardware-in-the-loop
operation and real world data. if a theoretical model produces data for
which no real world system exists, then only a limited confidence level
could be established in the model's behavior. However, if the model
produced data that could be compareo with real world systems or other
validated models, an increased level of confidence in model behavior is
Established. Additionally, if model generated data compaies with
results produced fro, a hardware-in-the-loop simulation, then another
increase in level of confidence can be establisled. This process
continues until multiple sets and sources of real wo.rld system data are
compared with model generated data, producing an ever higher level of
confidence in model behavior. The process of relating confidence levels
and data bases is graphically eepicted in l'igure 3.3.
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All the validation methods and mathematical tools can be used to
perform data analysis at each CLIMB level: data plots, overlays, Monte
Carlo analysis, chi-squared and Kolmogorov-Smirnov test, hypothesis
testing, comparison of means and variances, etc. However, the
confidence level in model behavior will not increase beyond a level
determined by the nature of the data available to compare with the mode]
generated data. in order to increase credibility, there must he a
source of data at a progressively closer and closer level to the real
world system. The elaborate use of expert opinions, data plots, and
mathematical analyses only enhance the "Cood Feeling" about the model
performance at a porticular confidence level, but does not provide a
basis for increasing the confidence level in a model's ability to
reflect the real world. This observation is graphically represented by
the staircase levels of confidence and associated data base shown in
Figure 3.3.

3.3 APPLICATION OF THE CLIMB PROCESS

The conceptual. structure of the CLIMB process was developed during
the first meeting of the working group. Details of the five level

structure evolved through repeated review and application of the concept
to existing simulation models. Results from individual modeling efforts
were used to develop the details at each level of CLIMB (Appendix A).
This provided both a broader view of the application and greater depth
in defining the knowledge base for the hierarchical levels. An existing
documented simulation model was recast ii the CLIW format throxigh level
three (Appendix B). This example provided the opportunity to identify
significant operational consideration in the application and use of the
CLIMB process with existing models.

The application of CLIMB to these existjng models deitonstrated
vividly to the members of this working group the effectiveness of the
CLIMB process, revealing in several instances insufficiert cata in the
model generated data base and the lack of information regarding model
operation. Conclusions cn be drawn about the usc cf CLTMB in two
areas. One, the most eificient and clective uses, of CIMF a-re in the
areas of establishing a basic framework for new model development and
validation efforts. The knowledge required for desired confidence
levels will be available during development with straight forward
documentation resulting. Two, investing the manpower and computer

resources for the application of (:1.1MB to developed or existing
simulation models will be most effective in areas where: (a) the roel
will be used and may be updated by third parties not involved in the
development, e.g., international transfer of models and tb) the model
will be used over extended periods where the developer would not be
available to establish confidence in the model behavior, i.e., models of
operational weapons systems that require modeling and analytis support
from different groups over the life of the system.



2.4 SLNMARY OF TIVF CLIMB PROCESS

The CLI1,P (Confidence Levels in Model Behavior) process is a
hierarchical process for developing conifidence in simulation models
through the integrated use of documenttiton, identification of
appropriate knowledge bases for a given level of confidence, and a
profressive use of analysis tools to broaden the confidence in model
performance. A summary of the essential Information for each idertified
CLIMBi level is as follows:

CLIMB lEVEl. 1: Yodel Sumumary, Results and Conclusion. This level
Includes information on the objective of the simulation, model
developer, function of the model, domain of application, major
assumption made in model development, criteria for model validation and
the results of model application. At this level, only functional
ciagrams with major subsystems and critical variables are Identified.
The overview nature of the information here is intended to give the
potential model user sufficient information to take the first step in
reviewing the model capability without getting lost in details. Expert
opinion is typically the major tool for confidence building at this
level with descriptive rather than technical documentation.

CLIMB LEVEL 2: System Models and Submodels Theoretical and
Tndirect Data Ease. The data base source is from theoretical models or
existing validated models. Method of data comparison is includeO along
witb technical and descriptive documentation of submodels. A benchmark
scenario with model results are given along with verification proceoures
of any computer implementation.

C:LIMB LEVEl. 3: Subsystem Peal World Data Base. This level
includes real world data for at least one major subsystem to be compared
with the simulation model generated data. Documentation is provIdec for
the total complex model including benchmark results. Data collection
and validation methods are described.

CLIVB LEVEL 4: Uordware-7n-The-loop Operation Data. This data
base includes results from a Hardware-In-The-Loop (lyllIT.) simulation with
ma 4 or subsystem models being replaced with actual hardware operation.
!lethods of data base com-parisons are identified along with criteria for
subsystem model validation. Specifics on the computer configuration for
HWIL operation is also given.

CLIMB LEVEL 5: Total Real Iorld Systems Operations. A data base
Is available from the real world system test and operation. As a
minimum, the critical variables are compared with corresponding system
data. Results of validation of system variables ire given along with
methods of validation according to established validation criteria.

A detailed outline of the elements in the total CLIMB process is

reported in Appendix A.
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IV. COMPUTER TANGUACFS

1. I ADA-BASFD SIMULATTOT, LANGUACE

The fact that ADA has been declared to be the standard for embedded
software in the future has some impact on dynamic system simulation
languages. The simulator, besides being used as a tool for system
development, is also used as a system integration facility that includes
the integration of embedded software. This second domain of application
has a growing importance. Since the operational software to be embedded
has to be written In ADA, there is a strong need tor the integration
facility software also to be written in ADA because tbere will be no way
to interface APP to any other language. Such interfacing would he in
direct contradiction to ADA's design target of software reliabilitv.
This means that today's simulation languages will no longer be
applicable for the purpose of embedded software integration. Th,,;, a
new generation of simulation languages will have to he introduced even
though it may not really be possible to dOn this in the given time span.
One possibility to overcome the time problem is to stay with the
existing simulation languages and to modify the compiler to transform
from the native simulation language code Into an ADA source code program
that will operate in a preprogrammed ADA simulation system. This woul(d

be equivalent to the existing languages that use FORTRAN as an
intermediate language.

In order to start as soon as possible with new software, PASCAL.
could be used until ADA becomes available. Besides the aspect of
embedced software integration, ADA can be helpful i: identifying modern
softvare technicues that should be included in future simulation
languages. Examples of such broadly accepted common features would be:

- COTO--free structured programming techniques

- modularizatlon of programs into complete,
self-contained sub-rc.dules

- mandatory declaration of variables, etc.

4.2 SIMUlATTON SYSTEM ENVIRONMENT

There is a great number of problems related to simulation and
projects making use of simulation tools. Some of these problems that
are normally not mentioned when dealing with slmulation languages
include:

(1) Life cycle maintenance costs for weapon
performance simulation programs

(2) Fase of software maintenance during development

ltem (2) is very important and needs to be discussed further.

During a project Involving a great number of engineers, It must
never bappen that a copy of a "reference standard program" is made which



is not made from a certified source program and not clearly identified
and registered.

Any change to the reference standard program has to be Immediately

duplicated en all existing copies of that reference program so that,
during development, this requirement cannot be fulfilled without
activating a considerable amount of manpower. Therefore, one design
objective for future simulation languages should be to offer tools for
facilitating such "software consistency management" work.

The software management problem automatically leads to the problem

of describing the environment of the program. It is not sufficient to
define only the program itself and the language used for the
compilation, but all environmental conditions have to be described suc,
as computer type and model, operating systems, libraries, etc. Tr would
be most desirable if future simulation languages he included as an
integral part of a bigger simulation system environment description with
system features like those mentioned software consistency management
features being included. There are a great number of problems that are
most common in today's simulation facilities and that could be avoided

by a well designed environment and a language supporting that
environment. Therefore, it seems to be reasonable to suggest further

investigations in that area.

4.3 LANCUACE FEATURES

A wish list of desirable language features has been compiled. This list
is presented here without comments just for information:

- portability

- improved error debugging, error avoidance, automatic detection
of errors (computer/language/compiler problem)

- output/plot capability, stripplot, plot overlay, specific plot
for pin-pointing e.g., showing jumps of the discrete
controllers.

- non-ideal behavior of digital controllers
synchronization, time delay, time matching ("discrete time
event")

fixed point arithmetic, scaling, overflow, ADC, DAC

- slmnlation of noise

- statistical runs, Monte Carlo runs, statistical evaluation,

connection to statistical programs

- connection to control analysis plus synthesis programs for
verification, analysis, synthesis, optimization "ANALYZ"

- integration algorithms plus step sizes
multiple integration algorithms plus step
sizes interpolation, extrapolation

U- i
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- configuration control

- simulation of specific points such as friction ("discrete state
event")

- real time capability plus hardware-in-the-loop capability

- modularity (i.e., easy decomposition of models into sub-units)

- structured programming techniques

- automatized "software consistency control" administering the
different releases and versions of library programs

- decomposition of a simulation "program" into "mrodel" and driving

environment "experiment"

- data base concept for result data and post-processor programs
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V. SOFTWARF/VERIFICATIOY/VALIDATION/ASSESIFNT METHODS

5.1 INTRODUCTION

Following much discussion/debate by members of this working group,
a general consensus was reached that a detailed treatment of specific
verification and validation techniques, their merits, drawbacks, etc.,
as applied to guided missile simulation development would far exceed the
scope and time limitations imposed on WG-12 and, therefore, not be
attempted. it was decided instead to concentrate the group's primary
efforts or outlining the CLIMB process previously discussed. Although
the primary efforts of this working group were not directed at exploring
the merits of verification and validation techniques, for completeness
.n attempt is made in this section to identify many of the popular
approaches with a specific effort made to identify references so the

reader can explore In more detail particular approaches of interest.

Consistent with the terminology established in Section II, Figure
1.1 illustiates grapHically the interrelationships between verification,
validation, and assessment. As can be seen in the figure, all key
elements of verification stem from some form of mathematical or computer
code checks performed on the simulation to verify that the answers
produced by the simulation are consistent with theory. One key answer
is that to the question, "Is the simulation code error free and does it
produce answers consistent with the math model?" It can also be seen
from the figure that a rather large menu of verification options and
techniques are commonly used. Vith the increasing use of highly
structured and sometimes automated simulation languages, techniques as
these are graduallv being incorporated directly Into the languages, thus
making the verification process easier and more straightforward to

accomplish. Each of tbe verification techniques illustrated in the
fipure are discussed in Paragraph 5.? below.

Validation, on the other hand, requires real world data to compare

against simulation resultsl not theoretical predictions as is the case
for verification. As shown in Figure 5.1, some form of hardware testing

must be conducted to obtain the necessary real world data. These tests
generally consist of bench test, hardware-in-the-loop (FIL) simulation,

and free-flight trials. Unlike verification, which as discussed above
Is beginning to take on a rather structured straightforward approach and
can very closely approach an absolute, validation is still widely
varying and subject to individual preferences and technique. To

accomplish model and simulation validation (usally accomplished
simultaneously), some form of objective mathematical method must be
applied to compare available real world data to simulation predictions.
Additionally, the real world data base used for validation must be
independent from that used in the original model development. A good

example of this is the validation of a missile aefodynamic model using

data obtained from actual vehicle flight testing when the original model
had been developed from wind tunnel data or aerodynamic prediction
computer programs. Several mathematical methods being used by members
of this working group for validation and others reported in open
literature are discussed in Paragraph 5.3 below.



The last topic to be discussed in this section of the report i -
assessment. Assessment, as shown in Figure 5.1, plays a significant
role in the missile overall design, development, and testing proces;s:.
Two types of assessment are identified in the figuie; one, in-hcuse and
two, third party. Although each type involves subjective judgirent,
consistent with the terminolegy in Section T1, one feeds information
hacd into the missile design process while the other feeds information
to the customer's management decision process. The general assessi'ent
problem along with details of both assessment types are discussed
further in Paragraph 5.4 below.

5.2 VERIFICATION/VAIDATTON METPODS

5.2.1 Systematic Program Testing: (A difficult task.)

One of the largest Illusions in soft ware development is the
belief that it is possible to get hv with little propram testing and
verification (Ref 2). According tc studies in the USA (Ref 3), the
verification requires 30% - 50% of the total project costs (Fig 5.2).
The higher the portion, the more complex the system. No methods,
techniques and tools are available to generate programs without errors.

It is said that the originators of programming, among others, John
von Neumann, have been totally surprised by the error-rate of their
programs (Ref 4). Methods for a mathematical proof that the program is
faultless have not been fully developed up to now. So the testing is
the only means for minimizing the error-rate (Ref 5). The testing

begins with the functional specificaticr, continues with the
verification of the different modules and ends with the integration test
(Figs 5.3 and 5.4).

There exist some general rules, which can help to minimize the
errors:

- We] defined specification and program design, a farsighted
program structure and terminology

- Careful coding

- Design of the program with regard to testing; Implementation of
testing aids already in coding (Ref 6)

- Advanced computer tools for formal testing computers, languages
and compilers with improved error avoidance

- Selection of adequate design and test strategies (Fig 5.5):

"Top-down". The modules are substituted by program "stubs."
If the overhead program has been tested, the stubs are
replaced by detailed modules (Ref 7)

"Bottom-up". The design and testing begins with the lower
modules. The upper programs or calling programs, are
substituted by test drivers that are later replaced by real
programs (Ref 8)



"Pardest-First". The programming and testing begins in the

middle with difficult modules. The program grows both up )rd
down (Refs 9 and 10).

Fach of these strategies has its advantages and disadvantages and
there is ro clear recommendation in the software engineering
literature as to which of these methods Is the best.

There are two approaches for the determination of test conditions:

the "black box" and the "white box" approaches. The "black box"
approach considers the module to be tested as black box between the
input and output without being Interested in the inner details of this

box or module (Ref 11). The "white box" approach, on the other hand,

studies the details of the module or test object in order to derive the
test conditions. Thus, the amount of test cases can be minimized.
However, the test object has to be understood very well by the tester.
A tester, who is not familiar with the details of the program, should

begin with the "black box" approach (Ref 12).

It is recommended that a test laboratory book be kept in which all
test conditions and results are documented. Fig 5.6 and 5.7 show
typical test systems. Fig 5.8 shows the "dual program analysis" is that

used at NASA.

Management and costs of testing and quality assurance (OA). The test
management has to take into account: (a) costs of testing (Table 5.1),
(b) planning of testing, (c) organization of testing, (d) specification
of testing, and (e) revision of testing. The testing of a program

consists of the following test phases:

- Static formal tests - The program is compiled but riot yet run.

- Dynamic formal tests - First runs with debugging aids.

- Test of the modules - Module verification.

- Integration test - Verification of the overall system.

- Final acceptance test (Ref 13).

The first two formal tests rely heavily on the available computer
and its language. Typical methods Ovailable in CYBER-Fortran V and ACST.
are shown in Tables 5.? and 5.3 and Appendix C.



The earlier the quality assurance starts, the cheaper It Is in
proportion to development costs of the program; i.e.,

- 0.093 if started at program specification

- 0.125 if started at debugging

The more favorable the test conditions, the cheaper the quality
assurance becomes:

- 0.125 with favorable conditions
- 0.420 with unfavorable conditions

The larger the system (> 64 k), the better the relation of
quality assurance costs to development costs become:

Favorable conditions:

32% for small systems (< 32 K)
12% for large systems (> 64 K)

Unfavorable conditions

69% for small systems (< 32 K)

42% for large systems (> 64 K)

Table 5.1: Costs of Testing and Quality Assurance Derived from IEEE

Studies.

Static formal tests

- source code inspection
- inspection of the Fortran-list precompiled by the simulation

language
- inspection of the cross reference listing

- Inspection of the load list
- inspection of the program portability (Compilation of the

program in the "ANSI-mode (Fortran) to ascertain the
statements flagged as "non-ANSI").

Dynamic formal tests

- Runs with "no preset = zero". (Some computers do not have

this option by which the error rate is increased)

Runs with "DEBUGGING AIDS"

- ACSL DEBUG

- Cyber Trace back (Post mortem dump, which prints a readable
summary of the error condition and the state of the program
at the time of failure In terms of the names used In the
original program.)

- Cyber Interactive Debug facility (CID).

Table 5.2: Computer Tools for Formal Testing

AL . . . I
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The further tests are called verification tests. A typical test
consists of the following phases:

- Recognize an error

- Make a hypothesis about the location where the error will

occur and the source of error

- check the hypothesis by the available computer tools and
detailed "test-print-outs"

- correct the error.

The first phase, recognizing an error, is the essential and most
difficult point of the verification.

Ve define an error as the difference between exact solutions and
simulated solutions. The main difficulty with simulation programs is
that the exact solution is only known for simple modules under certan
restrictions. With complicated models, the exact solution may only be
approximated by numerical simulation techniques. In the next section,
methods are described for verifying and checking these approximations.

5.2.2 General Verification Methods for Iissile Simulations

There exists an extensive number cf publications on the theme
"verification of software", but nothing specific has been published with
respect to "verification of missile simulations". The only exception is
the paper of S. Schlesinger from the Aerospace Corporation, El Segundo,
California (Ref 14). With the example of the simulation of an analog
autopilot, typical verification tests are described.

In the following, we apply the verification methods to the
simulation of a sere modern missile, which uses microprocessors instead
of the former analog controllers. It turns out that simulating digital
control svsterrs, which are also called "sampled-data control systems",
is a preat challenge from the point of simulation and theory. The
following is intended to remain not only general, but to illustrate some
problems with examples resulting from experiences with a large o - DfnF
simulation written In ACST and Fortran V. The veriffcation methods that
have been applied include:

- Verification of the equations of the model

- Hand check

- Verification against existing and relevant theory

- Verification against other simulation programs

- Degeneracy tests

t.Ihen parameters are selected to eliminate the effect of a
particular feature in a model, then the resulting output from



the computer simulation shall act as if the characteristic
modelled by the eliminated feature is, in fact, totally absent

- Consistency test
Similar simulation cases yield essentially similar
results even though stated to the computer model with differing

combinations ot descriptive parameters.

- Verificaticn of integration algorithms, stepsizes, sorting and

timing. Sorting and timing errors may introduce additional time
delays to the overall system

- Logic tests - branch/path tests

- Integration tests
The purpose of integration tests is to verify the interface
between (verified) modules from a static and dynamic point of
v iew.

- Stochastic test

5.2.2.1 Implementation of testing aids already in coding

These testing aids are recommended:

- Switches for degeneracy tests. For example a rate gyro may he
simulated

CYSW = 0. no errors, no time lag
= 1. errors, no time lag

= 2. errors, time lag

- Switches for consistency tests. A typical application may be

switches for verifying the subsystems "Autopilot + Airframe" in
pitch against the yaw channel. The test cerditions must be
such, that according to the theory, the Fitch and

yaw channel must yield identical results.

- Switches and test driving signals for opening control loops. A
typical example is that of the most Inner loop; it is first
verified by means of a deterministic signal (step, ramp,
sinusodial signal). After this test, the next upper control

loop is closed.

- Specific "test-print-outs" for logic-, branch-, path- and

timing- testing.

We distinguish:

- Deterministic verification: The data of the plant are fixed and
the test driving signals are deterministic.

- - I -
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- Stochastic verification: A stochastic signal is used as test
driver. Also, the plant data may statistically varv according to

the assumed tolerances (3 u values).

A general rule says, that a simulation must first he verified by means
of deterministic methods.

5.2.3 Specific Verification Methods for Missile Simulations

5.2.3.1 Verification ol the equations of the model

Several equations are needed to represent the image of a spatial
target as seen by the missile seeker head. For verifvIng these
equations, one must know the terminology and derivation of the
equations, which should be documented and sc detaileo that they can be
verified by another person.

5.2.3.2 Hand checks

Examples are:

- Verifications of the correct implementation of the aerodynamics.

- Verifications of the integration algorithms by a sinusodial
input signal which is integrated twice. The resu lt should

again be a sinusodial signal.

- Craphical verification of the image processing of the seeker
seeing a spatial target.

5.2.3.3 Verification against existing and relevant theory

Guidance and control theory has become a well established topic
with a historv of roughly 50 years and an extensive number of
publications. However, there exists a large gap between the fairly
sophisticated theory and the simple PID-controllers and PN-navigation,
which are predominantly used in practice. One of the reasons for this
gap is the fact that modern control theory is quite difficult to apply.
The theory of sampled data control systems is especially much more
difficult to apply than the conventional theory for continuous systems.
Fig 5.9 illustrates this. Calculating the exact time response, x, to
the deterministic inputs, x , which may be a step, a ramp or a
sinusodial signal, requires considerable skill in z-transform analysis
(Ref 15) and a substantial number of sophisticated numerical
calculations even though only a simple digital PD-controller has to be
analyzed. Also, random inputs, such as the measurer[ent noise in Fig 5.9
may be taken into account. For example, there exists a theory for
calculating the variance of the output, x, due to the noise output,

n(t).

Special computer programs for control analysis and design eyist.
An example is the Computer Aided Control System Design (CADSD) from ETH
Zentrum, Tnstitute for Automatic Control, Zurich, Switzerland (Ref 16)
which consists of:
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- SIMNON - A simulation program for a continuous system with
discrete-time regulators (sampled data systems)

- IDPACK - A program system for data analysis and identification
of linear deterministic stochastic multi-input, single-output
systems

- SYNPAC - A state-space oriented control systems design program

- POPAC - A frequency-domair oriented design program, 6nd

- MODPAC - A program for transformations between different control
system representations

Another method exists for analying the digital control by means of
approximations. This method has the benefit that a special control
analysis program is not necessary and hand checks may be used, thus
providing more insight into potential problems. For example, the
digital contro!ler (Fig 5.9) can be converted into an analog controller
by use cf a bilinear transformation and the sampler + zero order hold
may be approximated by a first order Pade time lag (T = T/2) or a time
delay(e T/2). Thus the conventional methods in the s-plane may be
used. Blakelock (Ref 17) calls the first approximation "digitization"
method and compares it with the exact z-transform method.

There are many other theories available, which may be used for
verification of simulations:

- Nonliear Control Theory

- Kalman Filter Theory

- Guidance Theory
Conventional and modern guidance theory with deterministic and
stochastic inputs. A typical example is to verify the miss
distance due to noise of the seeker.

- Strapdown Algorithms Theory

5.?.3.4 Verification against other simulation programs

Examples of this method of verification include:

- 6 DOF against 3 DOF
- 3 DOF against 3D (3-dimensional with trimmed aerodynamics)
- 6 DOF (CSMP) against 6 DOF (ACSL) (Verification of the

conversion from one simulation language/ccppouter to another
simulation language/computer.)

5.2.3.5 Degeneracy test

Degeneracy implies simplifying the phenomena being modeled by
selecting certain spccial parameter values. An example follows:
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For the stabilization of tbe seeker platform, the following

degeneracy test has been conducted:

- Simulate the gyros and look-angle pick offs without errors and
time lag

- Let the two-axis stabilization degenerate to a pitch-only-
stabilization.

Under these simplified conditions, the stabilization should be perfect.
In this manner, errors in the program can be detected much easier.

5.2.3.6 Consistency tests

See Paragraph 5.2.2.1 under the testing aid titled "Switches for
consistency tests."

5.2.3.7 Verification of integration algorithms and stepsizes, sorting,
timing and repeatability

Similar to guidance and control theory, the theory about
integration algorithms has become a well established topic with a long
history. However, there exists a large gap of knowledge between the
numerical mathematician and the practical simulationist. Furthermore,
it turns out that algorithms that had been extremely powerful for the
simulation of continuous systems, such as the Adams multistep methods,
are no longer optimal for problems having frequent discontinuities (Ref
18). Modern algorithms, which are commonly called Adams PECE (Predict,
Evaluate, Correct, Evaluate) automatically vary the stepsize and order
for solving a problem to a given requested accuracy. W. Bub shows in
Ref 19 that it is possible to evaluate the numerical stability and other
features of integration algorithms by means of the z-transform * and
recommends Adams multistep methods for the solution of linear transfer
functions. The other class of integration algorithms are called
Runge-Kutta methods. They are most widely used for the numerical
solution of first-order, first-degree equations. In contrast to the
Adams multistep ilgorithms, they are self-starting.

"Runge-Kurta" methods are easy to implement on a digital computer
and are probably preferable to predictor-corrector techniques for most
purposes. Their main disadvantage is that it is difficult to keep a
check on the truncation error. The simplest way to check a solution is
to repeat it with a halved step length - though more efficient means are
suggested in specialist texts. A further point is that the widely used
fourth-order Runge-Kutta method requires four evaluations per step of

the function_"f". compared with at most two per step of a
predictor-corrector solution of comparable accuracy. The )atter method
may, therefore, he more suitable in cases where it is very complicated,
so that its evaluation is expensive in computing time. (Ref 20)

* Numerical mathematicians use other methods.
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After this general literature overview, we shall deal with the
problem of simulating a fast digitally controlled missile, whose
smallest sampling time, T, must be very small due to the required high
bandwidth of seeker head stabilization and autopilot. The main issues
are:

(a) Optimal integration algorithm and stepsize (assumption: the
program uses a unique integration algorithm and stepsize)

(b) Verification of the sorting and timing

(c) Simulation of the non-ideal behavior of the digital
controllers

(d) Multiple integration algorithms and stepsizes to save
execution time.

(a) Choice and verification of the integration algorithms and
stepsizes

A general rule of thumb is that the stepsize, h, should be at least
h = 1/2 T . , with T . = rinimum of the smallest sampling Interval T,
smallest .me constaniT, smallest T = 1/w , smallest T = I/. The
last 2 expressions refer to the bandwidth oY the noise, respectively the
frequency of the sinusodial signal (see Fig 5.9). Tn this case, the
sampling time was the main driver for the stepsize. The cheapest
algorithm is the Adams-Bashforth 1 (AB 1), which requires only one
evaluation per step of the derivative function "f" (see below). it has
been compared with the Runge-Kutta 2, which requires two evaluations per
step. The starting algorithm of the AB I has been executed only at the
beginning of simulation and not as theoretically required at each
discontinuity (i.e., sampling interval). Experience with a large
program (30 integrators) was that h = 0.5 T was sufficient for RK 2, but
not for AB 1, which requires in any case h = 0.25 T. With this
stepsize, the AB I Is still slightly inferior to the RK 2 with
h = 0.5 T.

Adams-Bashforth (AB 1)

t =0 x x
0 0

t=h x1  + h x
1 0o 0 1 Starting algorithm

x + h/2 (Y + x1) -

t 2h x2  x I + h/2 (3 x -x)

t =3h x, x 1 + h/2 ( 3xii - xi)

h (3z - 1)
This can be expressed as z-transfer function x(z)/x(7) ------

2z (z - 1)
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Runge-Kutta 2. order (RK 2)

xn+ 1 =x n + a k + (I -a) k

with k = h x , x = x (t = t, Y = x
0 n r. n' Pl

k = h x (t = t + h/2 (0 - a), x = x + hx 1/2 (1 - a)kI =hx(=t n n n

a = 2/3

x)
h

Xn + 2/3

LXn_

n n + 2/3 n + I

Nn + 2/3 °n + IX xn+/R Xnx n+2/3 n+I

The chosen way of verifying the numerical solution was to repeat
runs with a halved step length and to introduce a severe test signal
such as a sinusodial perturbance. At the beginning, the difference was
considerable. One could think that this was the proof that the smaller
stepsize had to be taken. However, it turned out, that also sorting and
timing errors contributed to the difference.

(b) Verification of the sorting, timing and sample devices

With simulation languages, there exists an automatic program
sorting. ACSL automatically sorts the model definition code that is
placed in the DERIVATIVE section. The statements within PROCEDURAL
blocrs are not sorted. The PROCEDURAL block is positioned according to
the input and output variables of the PROCEDURAL header. Sorting errors
result especially in that case where not all output and input variables
are in the header. On the other hand, too many variables in the header
may result in "program unsortable." Another problem is the simulation
of digital algorithms. A large missile simulation contains multiple
sampling devices and different time delays.

The following verification methods have been used:

- Runs with "no preset = zero" to detect initialization
errors.

- Verification of the repeatability; 2 runs,' which are repeated
in one JOB, must yield identical results.

- Runs with additional evaluation of the DFRIVATIVE section at
each communication interval (which is identical to the
integration interval). The comparison with runs where this
additional evaluation is omitted must yield identical results.
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- detailed "test print outs" for the testing of the different
sampllng and delay devices.

(c) Verification of the simulation of the non-ideal behavior of
the digital controllers

The non-ideal behavior consists of computation delays,
asynchronous sampling and delays, errors due to fixed point arithmetic
and overflow. Usually, these effects are assumed to he negligible.
However, in applications with fast control systems, these effects may
cause limit cycles, time matching problems and transient effects and
therefore cannot be neglected (Ref 21). Modern simulation languages
are improved with respect to these features. The ACSL version 8A now
offers the macro SKEDTE (Schedule Time Event), which can be used to
simulate a computation delay, AT , after the Analog-Digital-Converslonc
(ADC). Such a feature of the simulation language must be verifiee bv
means of detailed test print outs.

(d) Verification of multiple integration algorithms and stepsizes

The simulation of fast digital control systems requires small
variable stepsizes and special integration algorithms. The slower
motion of the missile may be simulated with larger stepsizes and
multistep ADAMS algorithms. With ACSL, more than one DERIVATIVF section
may be used, each with its own independent integration algorithm and
stepsize. Although this technique can save execution time when
correctly used, any implementation must be approached with caution
since, in general, incorrect answers will be obtained unless the model
is divided into blocks with a full understanding of the effects of
computation delays for variables that cross block boundaries (Ref 22).

Languages are offered, which perform the necessary syntax analysis
and partition the problem into a sequential ane a parallel part.
Special methods must be developed tc verify these sophisticated

simulations.

5.2.3.8 Logic tests - Branch/Patch tests

In designing an appropriate structure and logic of the overall
program, the "top-down" design is recommended. The more sophisticated
modules are substituted by program stubs. Special logic drivers and
logic verification tests may be used.

5.2.3.9 Integration tests

The verification of the overall missile system must be based on
verification tests generated by means of the subsystem simulations.
Special testing aids (switches, test drivers and test.print-outs) are
helpful in comparing the overall program against the subsystem program.

5.2.3.10 Stochastic verification

The aim of stochastic verification Is to verify:

- the statistical behavior of the input

noise(variance, bandwidth)

- -
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- the statistical behavior of the output noise

against the theory (if possible) or other programs

- whether the number of statistical runs is
sufficient

The following two examples illustrate this verification:

First, Fig 5.10 shows the "measured" mean squared value as a
tunction of the number of runs N The theoretical value is 100 tn. It
turns out, that N = 100 yields errors up to 10% and is to small.

Finally, Fig 5.11 shows the noise reduction of a typical
Kalaian-Filter with time-dependent gain. If 1000 runs are evaluated, the

simulation results agree well with the theory.

What we can learn from these examples, is that a statistical
verification is extremely expensive. On the other hand, if only a few
statistical runs are performed, the statistical errors may be
considerable.



5.3 VALIDATION NIETHODS

5.3.1 The General Validation Problem

Validation represents, perhaps, the biggest challenge facing
today's simulationist. Reviewing the definition on validation presented
in Section II, one can see the difficulty of the task. Validation tests
the agreement between the model and the real world system being modeled.
The two key words in this definition are tests and real world. The
requirement to apply mathematical tests to compare the nodel and real
world separates validation from assessment. This also makes validation
an objective process, separating it from assessment - a subjective
process. The definition of validation by implication requires the
existence of a real world data base before validation comparisons are
possible. This real world data base is generally constructed through
four primary methods: (1) Bench tests; (2) FIL tests; (3) Field
measurements (target signatures, etc.); and (4) Flight trials (captive
and free-flight). It should also be noted that for model validatior to
be possible, the real world data base used for comparison must be
independent from that used in the original model development process.
During early stages of missile system development, model validation and
system testing for assessment purposes become inseparable. Flight
tests, once exclusively reserved for system performance demonstration,
are now often aimed at providing real world data for model/simulation
validation. Even with the increasing emphasis on the availability of
independent data sources for validation, the process is not absolute.

Simulation predicted system performance will never exactly match actual
system performance under all conditions. Results being reported in
current literature on missile simulation validation suggests that the
proper question is not "Is the model valid"? but "How valid is the

model"? Some measure of acceptable error between the model and real
world must be established. It is precisely this problem that gives rise
to numerous mathematical techniques to quantify the acceptable error for
validation purposes. Several of the most popular validation techniques

used in guided missile simulations are discussed below.

5.3.2 Specific Validation Methods

5.3.2.1 Pilot Overlays and Graphical Comparisons

Plot overlay and graphic techniques involve the comparison of
real world data to that produced by the simulation using plots. It is
by far the most popular validation technique. Graphical comparisons and
cross plotting of variables is limited only by the imagination of the
simulationist and the availability of real world data. The major
difficulty with the technique is "How close is close enough"?
Generally, "expert opinion" must decide this issue. Common practice
using Overlay and Graphical validation techniques is to plot real world
test data and establish a somewhat arbitrary, but small allowable error
that the simulation must stay within to be considered valid. Fxpert
judgment is usually the basis for establishing the allowable error.
Acceptable error is generally established between ore and ten percent
depending on the particular state variables being considered and the
intended application of the simulation. The major advantage of this



technique, aside from its simplicity, is the automatic and very grapbic
validation audit trail developed for the simulation/model documentation
package. For ad'itional information and examples of this technInue,
consult (Ref 23).

5.3.2.2 Correlation Coefficients

'the generation of correlation coefficients is a well knowr
mathematical technique to measure the time correlation of two processes.
If, for example, the time history of a missile system state variable or
internal subsystem variable were recorded during a live flight test and
the time history of the same variable generated by the simulation were
processed to obtain a favorable correlation coefficient (approaching
1.0), the two processes (one real, the othor simulated) are considered
equal. Only one computer run and free-flight trial is necessary to
conduct this test. Generally speaking, corre!ation coefficients meos,,re
the degree to which two time-varying signals compare. A perfect match
with flight test data obviously represents a valid computation of a
variable. The application of correlation mathematics represents a
strenuous test for simulation validity. Not only must amplitude
characteristics match to obtain a good correlaticn coefficient, but
phase is also extremely important. Very small Oeviations in missile
system models will create significant phase changes on some state
variables, especially for Pon-linear models, resulting in rather
dramatic shifts in correlation coefficients. For this reason,
correlation coefticient techniques, are not often used for validation. A
detailed discussion of correlation mathematics: and examples of their use
maxy be found in (Refs 22, 24 and 25'.

5.3.2.3 Theil's Inequality Coefficient

A technique developed by Theil has been used by economists to
validate simulations that include econometric models. Theil's
inequality coefficient, "U", provides an index that measures the degree
to which a simulation model provides retrospective predictions of
observed historical data. "U" varies between zero and one: if 11=O, the
predictions are perfect, if 11=1, the predictions are very bad. Although
Theil's theory was developed for economic models, in recent years much
success has been demonstrated in its application to dynamic scientific
models. Examples of its use for missile simulation validation are
contained in (Refs 26, 27 and 28).

5.3.2.4 Chi-Square and Kologorov-Smirov Tests

The chi-square and Kologorov-Smirov tests are two special types of
hypothesis tests often used to establish the equivalence of a
probability density function of sampled data (in this case, simulation
output) to some theoretical density function (in this case, real world
data). Fach of these tests derive a figure-of-merlt to characterize the
goodness-of-fit between two probability density functions. The
chi-square test general procedure involves the use of a statistic with
an appropriate chi-square distribution as a measure of the discrepancy
between an observed probability density function and the theoretical
density function. A hypothesis of equivalence is then tested by



studying the distribution of this statistic. The main problem of the
chi-scuare test is that it is relatively sernsitive to non-normality.
The Kologorov-Smirov test, on the otler hand, is a distributior-free
(nonparametric) test. It involves specifying the cumulative frequency
distribution of the simulated and actual data. Unlike the chi-square
test, the figure of merit or goodness-of-fit is not a statistical
variable and is, therefore, not sensitive to normality. For more detail
concerning exact implementation procedures for each o' these tests see
Refs 23, 25 and 29.

5.3.2.5 Monte Carlo Boundarv Generation

Monte Carlo Boundary Generation is a well known techniue involving
multiple runs of a simulation, Including ail known noise and error
sources, to establish accumulated statistica7 properties cf select(d
state variables as a function of tine. Using th;e overlay graphics
methods discussed in Paragraph 5.3.2.1, the mean and standard deviation
of the selected variables are plotted an a function of elapsed simulated
missile flight time. -f real world flight trial data for similar launct.
conditions overlavs the Xonte Carlo generated simulation data within the
established hounds (usually one sigma), the simulation is considered
%alid for that variable. Generating similar plots for al' critical
qtate variables and internal svstem variables will fully validate ti-c
simulation. Two maior differences distinguish the Monte Carlo Boundary
Technicue from the Plot Overlay and Craphical Comparison Technique as

described in this report. One, the validation boundaries Pre applied te
the simulated data fot the Monte Carlo technique with flight test data
overlayed within the defined boundaries to establish simulation
validit., and two, the validation houndaries represent statisticallv

generated error properties based on multiple simulation runs instead of
a sing' flight test trial with small, but somewhat arbitrary error

boundaries applied as is the case for the Plot Overlav and Graphical
Validation Method. The maior disadvantage o; the Monte Carlo Validation

Technique should be rather obvious by now; that is, computer costs.
Fundreds of runs arp sometimes required to obtain accurate statistical
properties and to arsure adequate confidence levels are obtained. The
application of special programs for statistical analysis is also
sometimes required.

5.3.2.6 Spectral Analysis

Spectral analysis is a class of mathematical processes that
consider the spectral content of data. These include techniques as
Power Spectral Density, Cross Spectral Density, and others. Spectral
analysis provides a means of obiectivel\ comparing time series data
generated by a corputer simulation with an observed time series obtained
from real world data collection. Spectral analyals Is aimed at the

quantification and evaluation of uncorrelated data after the data has
been transformed into the frequency domain. Bv comparing the computed
spectra of simulation output data and corresponding real world data, it

can be Inferred how well the simuiation resembles the system or
subsystem it is intended to emulate. Unlike many of the other
validation techniques discussed In this report, spectral snalysis does



not inherently produce figures-of-merit to quantify poodness-of-fit
between simulation output and real world data. Spectral analysis is
extremely dependent on expert iudgment to answer the question "Pow close
is close enough"? For more discussion covering the many spectral

analysis techniques and examples of their use, consult Refs 30, 31, 32

and 33.

5.4 ASSFSSMFNT:

5.4.1 The Ceneral Assessment Problem

Assessment, as defined and used in this report, includes all

activities involving the application of sub'ective 'udgment (i.e.,
expert opinion) to answer the question "Vill the system/subsystem design
meet specifications"? Assessment involves subjective evaluations of all
aspects of the weapon system development process, including, but not
limited to: system simulations, hardware bench tests, captive flight
tests, free-flight tests, hardware-in-the-loop tests, etc. Manv ot the
mathematical processes and techniques applied to missile simulation
validation are useful in acquiring data to help 1nswer the assessment
question. The key to understanding the difference between validation and
assessment is in the use of the data. That is, validation corcentrates
on the performance of the simulation (i.e., Does the simulation properly
emulate the design?), while assessment concentrates on the performance
of the system begin simulated (i.e., Does the design meet specifica-
tions?) Assessment begins very early in the weapons development process
and continues throughout the life of the project. As illustrated in
Figure 5.1, there are two distinct tvpes of assessment. One, in-house

accomplished by the system prime contractor, ouar the other, third party
accomplished by the customer or a third party contractor employed by the
customer.

In-house assessment Is identified in Figure 5.1 by the boxes
representing four major data sources; the mathematical simulation, the
HIL simulation, missile design data, and missile hardware data. The
figure clearly illustrates that in-house assessment plays a key role in
the system/subsystem design process. Although subjective In nature,
in-house assessment offers the first opportunity to compare simulation
predicted performance (generally generated during the simulation
verification and validation process) to customer requirements (system
design specifications) and feeds back information to the design process.

This feedback often results in system design rodifications which in turn
result in simulation modifications creating the need for additional
passes through the simulation verification and validation process.

During system/subsystem design activities, in-house assessment and

simulation verification and validation are inseparable, each feeding the
other until a design Is finalized.

Third party assessment, on the other hand, involves independent
evaluation of the entire missile system/subsystem development and
demonstration process, and as such, has little direct impact on the
system design. Some indirect influence is present, however, due to the
use of third party assessment data for customer management decisions and
the impact these decisions may have on system specifications. As



pointed out by Richard Richels of the Electric Power Research Institute,
"Decision makers are becoming Increasingly annoyed that different
analyses get quite difterent answers to the same problem." When this
happens, it is natural to want to take a closer look at the simulatiou

models employed and find out why such differences result. This all to
familiar situation has led to the increasing use of third party
assessment to provide an independent check and balance on the weapons
development process and to provide customer management (i.e., decision

makers) with unbiased nonparochial information on system/subsystem
designs and performance limitations.
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VI SU11ARY AND RECO NENDATITOS

In summary, the Working Group found that the conclusion reached in
ACAPRD-AC-279, "Survey of Missile Simulation and Flight Mechanics
lacilities in NATO" regarding the general lack of uniform accepted
missile simulation validations methods was indeed correct. In addition,
the need for such methods is becoming increasingly apparent in all of
the participating Working Group countries. This was clearly evident in
a very recent article in AGARD Highlights, "Missile System Simulation

and Validation," by Dipl.-Ing Roland Cauggel of BGI, March 1984. (It is
interesting to note that this paper discusses "Simulation Levels" very
similar to the "CLIMB Levels" in Section 111, apparently conceived
independently from the Working Group activity.)

It is one thing to establish that uniform validation methods are
needed; yet another thing to develop these methods. As stated in
Section I Introduction, the Working Group found the latter a formidable
task. Nonetheless, the general framework of a validation, or more
precisely, "simulation confidence building procedures" is presented in
Section ITT. It was very difficult to overcome the temptation to
associate this approach with "documentation alone." While the
appendices do show the documentatior application, the concept is in fact
much broader.

Numerous discussions by Working Group members were required to
develop a "unified" understanding of the process itself and its broader
use. Even as this report was written, some members felt that the
process may be too complex or too difficult to understand, and
therefore, perhaps will never be used. On the other hand, almost all of
the Working Group members felt that a primary activity by the group is
to "preach" the "process" to others in their respective countries.
Publication of this Advisorv Report should support this recommendation.

Other specific aspects of missile system validation were covered
(e.g., computer languages, verification/valldation/assessment methods)
in Sections IV and V. However, these treatments were of necessity quite
limited. Each area covered, in fact, serves as a topic for additional
Working Groups or, perhaps, AGARDographs. But before recommending any
specific actions of this type to the Flight Mechanics Panel, the Working
Group felt this report should be published and widely circulated within
AGARD for comment on the overall topic. Only after feedback from
experts and potential users should additional action be taken by the
panel.
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APPENDIX A

DEVELOPING "CONFIDENCE LEVELS IN t ODF. BFI'AVIOR"

OR THE "CL.IMB" PRO flF.

CLIMB LEVEL 1. MODEL SUMMARY, FFSUI.TS AND (W:CT(VSTI 'O

Level 1 includes identification of the mode! dveloper, ,.ummarv ot the
model, and general description ot the model witl -imp litlivd dapram.
The objective of the simulation, domaiO - irtt-"t "  appT (;,tion and
criteria for model validation is stated 1,t t*.. "MtIk, m., 0 4 '. vrttir;1
variables and major assumption, used i T r:,,d r e -r' r' i dent i ed

and conclusions on overall Tode' ( vrt no i r, T '<t r.

1. MODEL ORIGIN AND RFI.ATFP IYuf R,!A'; I"

1.1 Total name of simulaftoi, mode]

1.2 Name of developing organi7attrl,
1.3 Address of organizatton
1.4 Name of contact for additional intormation ibout odel
1.5 Address of contact for model Inforriat ion
1.6 Telephone number of contact
1.7 Organization for which model was developed
1.8 Address of organization
1.9 Contact person
1.10 Telephone number of contact
1.11 Keywords for data base processing

2. OBJECTIVES IN DEVELOPING THE SIMULATION MODEL

2.1 Objectives of the simulation
2.2 Background information leading to model development

3. MODEL SUMMARY

3.1 Definition of terms (omitting all symbols)
3.2 Conceptual model showing major input/output variables
3.3 Summary statement and descriptive documentation on model

application

3.4 Nature of model (Discrete, Continuous, Stochastic, etc.)

4. FUNCTIONAL MODEL

4.1 Description of functional model
4.2 Simplified functional diagram with major subsystem and

major variables identified

4.3 Definitions of and comments on major variables in
functional diagram

4.4 Critical variables identified for model validation

5. MODEL APPLICATION

5.1 Domain of intended application of simulation model

5.2 Major assumptions used in developing the model
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5.3 Major known limitation in domain of application
5.4 Nonobvious exclusions from model
5.5 Inputs to and Outputs from Model

6. PHILOSOPHY

6.1 Criteria for validation
6.2 Methodology for validation

7. SUMMARY COMMENTS ON SIMULATION IMPLEMENTATION

7.1 Type computer and operating system for simulation
7.2 Computer language or simulation language used

8. STUDIES CR AREAS WHFRE MODEL HAS BEEN USED

8.1 Specific studies where model was used
8.2 Related model background

9. COMMENTS ON MODEL PERFORMANCE

9.1 Summary of validation results
9.2 CLIMB levels achieved
9.3 General conclusions on model performance

10. APPLICABLE DOCUMENTS

CI1MB LEVEL 2. SYSTEM MODELS AND SUBMODELS THEORETICAL AND INDIRECT
DATA BASES

Simulation model and subipodel performances are compared with theoretical
models and/or existing appropriate validated simulation models. Vethods
of comparing model performances are identified and results given at the
level of visual inspection, expert opinion and plot overlays. Analysis
methodology with assumptions and deficiencies are identified.

1. SYSTEM MODEL ELEMFNTS

1.1 General description of system model
1.2 Block diagram of system model
1.3 Identification of major subsystems
1.4 Assumptions and justifications used system mode]

development

2. IMPLEMENTATION DESCRIPTION

2.! List of computer variables
2.2 Processing methods used and relevant parameter

identification (i.e., integration methods, initialization
methods, computer word length, etc.)

2.3 Required program library elements
2.4 Required computer resources



3. SYSTEM MODEL VERIFICATION

3.1 Criteria for model verification
3.2 Identify methods used for model verification
3.1 TIdentify data base used for model verification

3.4 Results from model verification

4. VALIDATION OF SYSTFM MODEL'S STOCHASTIC COMPONENTS

4.1 Identification of stochastic components

4.L Criteria for achieving validation
4.3 Validation methods and techniques used

(Comparisons of means, variances, distributions, etc.)

4.4 Data bases used for validation
4.5 Results from validation effort

5. VALIDATION AGAINST OT11FR FXISTINC MODELS

5.1 Identification of existing models used
5.2 Criteria for achieving validation

5.3 Validation methods and techniques used
(Comparisons of means, variances, distributions)

5.4 Data bases used for validation

5.5 Results from validation effort

6. SUBSYSTEM CHARACTERIZATION PNP BRIEF DESCRIPTION OF SUBSYSTEM MODEI.S

6.1 General description cf model
6.2 Block diagram of subsystem tmodel

6.3 Criteria for validation
6.4 Validation methods used
6.5 Validation results

7. BENCHMARK TEST CASE

7.1 Description of benchmark test case
7.2 Input data and computer configuration for test run

7.3 Output data or sample results for critical variables

7.4 Criteria for acceptability of benchmark results

8. COMPUTER PROGRAMS

8.1 User instructions
8.2 Computer listing

9. PROGRAM VERIFICATION

9.1 Criteria for verification
9.2 Identify methods for verification
9.3 Identify data base used for program verification
Q.4 Results from program verification

10. APPLICABLE DOCU1ENTS
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CLIMB LEVEL 3. SUBSYSTEM REAL WORLD DATA BASF

Real world data is usually available on at least one major
subsystem for comparing with simulated model results. Schematics and
technical documentation of the total complex model is included only if
the need arises resultirg from the validation efforts described here.
Statistical, logical, or deterministic methods are identified for
achieving validation of the subsystem model. Acceptability of the

submodel is noted.

1. REAL WORLD SUBSYSTEM DATA

i.] Identification of subsystem.

1.2 List of variables for which measured data exist. (Real

world data recorded in a format consistent with the
format of the simulated generated data.)

1.3 Data in hard copy, i.e. charts, graphs, plots, etc.
provided to correspond tc the critical variables

identified in CLIMB LEVEL 1. The source should be
identified of any additional data available.

2. EXPERIMENTAL TEST ENVIRONMENT

The description includes information at the subsystem level not
shown in CLIMB LEVEL 2 diagrams, i.e., inputs, outputs, test points,
scale factors, submodel linkages, etc.

2.1 Scenario used to excite subsystem

2.2 Description of test experiment

3. METHODS AND TECHNIQUES USED IN COLLECTINC REAl. WORLD DATA

3.1 Data collecting methods

3.2 Error sources associated with input and output
measurements

3.3 Analysis performed on input and output measured data

3.4 Contact for further Information on measured data

- Name

- Company address
- Telephone number



4. TFF APPROACI! USED FOR VALTDATING THE SUBMODEL USINC THE REAL WORLD
DATA

4.1 Criteria for validation

4.2 Validation methods used

4.3 Validation results

4.4 Vodel changes due to validation effort

5. TECHNICAL DOCUMENTATION FOR EXCITATION NFTHODS (FYCITATION SOURCES
NAY BE DIFFFRENT FOR SUBMODEI. AND REAT WORLD SUBSYSTFMS)

5.1 Description of excitation method(s)

5.2 Documentation of excitation data

5.3 Documentation of real world subsystem response

5.4 Documentation of submodel response

5.5 Computer program listing of excitation methods (The
computer listing of the submodel simulation will be shown
if different thav the listing shown in CLIMB LEVEL 2)

5.6 Excitation program for hardware test configuration

6. USER INSTRUCTION FOR TEST SET UP

7. BENCHMARK FOR TEST SET UP

7.1 Description of benchmark test case

7.2 Initial conditions for test set up

7.3 Output data or sample results for critical variables

7.4 Criteria for acceptable benchmark results

8. APPLICABLE DOCUMENTS

CLIMB LEVEL 4. FARDWARE-IN-THE-LOOP OPERATION

A data base is available from a hardware-ln-the-loop operation
using a major subsystem hardware component, e.g., for missile systems,
an autopilot, sensors/seekers, embedded computers, actuators, etc. A
typical process is to include hardware used to collect data from CLIMB
LEVEL 3. Results from the model versus hardware performance comparison



is reported with specifics on methods used for data comparisons and

performance validation. Included are specifics on any additional model
development environment for RF/EO/IR seekers.

1. DESCRIPTION OF HARDWARE-IN-THE-LOOP (IiWIL) SYSTE1

1.1 Description of hardware to be used for HWIL operation.

1.2 Description of computer system (Analog, Digital, Hybrid)

used for HWIL operation. Specifically, was the all
digital simulation program partitioned between a digital
and analog computer?

2. PARTITIONED MODEL FOR HWIL OPERATION

2.1 Diagram of the partitioned model showing elements of the
model to be replaced with hardware (Hardware is defined

as any outside element connected to the digital, analog,
or hybrid computer relating to the real world system.)

2.2 Assumptions and criteria for selecting the particular

partitioned configuration of the model.

2.3 Model variables partitioned between the digital and
connecting systems, Including the analog computer.

2.4 lentify the rodel variables showing range and scale
factors for the connecting systems.

3. RESULTS OF hARDWARE IN THE LOOP OPERATION

3.1 Time history plots of critical variables showing the
all digital computer results and HUlL results (Method of
showing results includes means and variances for systems

with random components.)

3.2 Identify any data analysis performed for comparing the

all digital and HWIL results, i.e., time correlation
analysis, distribution function testing, power spectral

density testing, etc.

3.3 Identify and change the all digital simulation
model based on results from 11ITIL operation.

4. COMPUTFP PROGRAM

4.1 Partitioned digital program

4.1.1 Identify changes or modlfication to the
digital computer program required for HWIL

operation, i.e., use of real time library

subroutines, integration methods, etc.



4.1.2 Input conditions and test scenario for

executing the all digital simulation
partitioned for HWIL configuration.

4.1.3 Expected output data from test scenario

4.1.4 Identify special program development for FWIL
operations, i.e., real time data recording,
online data analysis real time interrupt
drivers

4.1.5 List special programs required for
real time or HWIL operations.

4.2 Connecting Systems

4.2.1 Identify the critical variables between the
digital program and connecting systems.

4.2.2 Identify error sources associated with
connecting system variables.

4.3 Model Variables

4.3.1 Show verification of the partitioned model

against the unpartitioned model

4.3.2 Show verification of the HWIL system
against the partitioned nodel

4.4 Model Validation

4.4.1 Validation of the partitioned model against the
unpartitioned model.

4.4.2 Verification of HWIL system against the
partitioned model.

CLIMB LEVEL 5. TOTAL REAL WORLD SYSTEMS OPERATIONS

A data base Is available from operating the total real world
system. As a minimum, results are reported on the validation effort for
the system's critical variables operating in the 'domain of intended
application. Specifics on validation methodology and performance
comparisons are reported. Evaluation and conclusions are made regarding
the system model performance and deficiencies.

1. CONCLUSIONS AND COMMENTS ON MODFL, VALIDATION EFFORT USING RFAL
WORLD SYSTEMS TEST RESULTS



?. DESCRIPTIVE SUMMARY OF REAL WORLD TEST CONDITIONS AND TES7 EFSULTS

3. SYSTEY TEST ENVIRONITENT

3.1 Purpose of test

3.2 Description of test measurement methodology

3.3 Location of test site and ambient conditions as related to
system tests; i.e., temperature, pressure, wind velocity,

humidity, etc.

3.4 Error tolerances in the measurement system

4. DESCRIPTION OF TEST SCENARIO USED TO STIMULATE THE REAL WORLD

SYSTFM

4.1 Description of target or system test driver

4.2 Target or test driver initial conditions

4.3 Method used for reconstructing system test driver. (An
example for a missile system, reconstructing the target

trajectory would be required.)

4.4 Reconstructed system rest driver data

5. REAL WORLD SYSTEMS PFRFORMANCE RECONSTRUCTION

5.1 Initial corditions on system parameters as measured

5.2 Method of system performance reconstruction

5.3 Reconstructed system performance data (Example: Missile
position and velocity history, time of flight to closest
approach, position of closest approach, etc.)

5.4 Measured data on system's critical variables

b. STRUCTURING OF SIMULATION MODFL FOR SYSTEM TEST CONDITIONS

6.1 Identify simulation model variables Initialized using system
test data.

6.2 Identify assumptions made about simulation model initial

conditions for operating with system test conditions.

6.3 Simulation model generated data using real world system test
conditions.

- - -a• •-|-
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7. ANALYSIS OF SI1ULATED MODEL GENERATED DATA 
AND SYSTEM TEST RESULTS

7.1 Identify methodology of data comparison.

7.2 Results of comparing simulation model generated 
data and

system test results.

8. IDENTIFY AND EXPLAIN DISCREPANCTES BETWEEN 
ADJUSTED MODEL GENERATED

DATA AT:D REAL WORLD SYSTEM TEST RESULTS

9. RECOMMENDATTION FOR MODEL IMPROVEMENT



APPENDTX B

EXAMPILFS OF THE "CLIMB" PROCESS

The objective of this appendix Is to illustrate tbt, use of the
Confidence Levels in Model Behavior (CLIMB) process using as examples an
actual simulation of an electrical actuation system for a missile.
These examples follow the outlinep of CLIMB Levels 1, 2 and 3 presented
in Appendix A. The simulation was performed at
Messerschmltt-Bolkow-Blohm Cmbl! under the code named FLACT 3.

CLIMB LEVEL 1 FXAMPLF

1. MODF, ORIGIN AND RELATFD TNFORVATTON

1.1 Total Name of Simulation Model

ELACT3: Electrical Actuation System

1.2 Name of Developing Orgariration

Messerschmltt-Bolkow-Blohm Cmbli

1.3 Address of Developing Organization

Messerschmitt-Bolkow-Blohm CmbHl
Abtellung AE13
Postfach 801149
D-8000 Munchen FO
W-Germany
Telex: 5287-0 mbb d

1.4 Address of Contact for Model Information

- Person: Werner Bub
- Address: same as Paragraph 1.3
- Phone No: 089-60004125

1.5 Address of Contact for Additional In'ormatlon About Model

- Persons:

Fridbert Kilger, Phone No 089-60002302
Herman Neubauer, Phone No 089-60006364



Address:

Same as para 1.3

1.6 Organization for Which Model was Developed

Same as para 1.3

1.7 Contact Person

- Person:

Alfred Huber, Phone No 089-60000815

- Address:

Same as para 1.3

1.8 Keywords for Data Base Processing

Electrical Actuator, Missile Simulation

2. OBJECTIVES IN DEVELOPINC THE SIMULATION MODEL

2.1 Objectives of the Simulation

In tactical missile systems, a set of four fins moved by actuators
usually constitute the control surfaces of the missile arframe. These
are contained in the autopilot loop to produce the three rotational
degrees of freedom of the missile.

Objective of the development of the present model was to provide a
szubsystem model of an electrical actuator system, taking hinge moments
Into account, that could be included in an overall missile system

simulation model.

2.2 Background Information Leading to Model Development

The rodel was developed In 1978 to be used for simulation of the
EMS Expeiimentai Missile System.

3. MODEL SUflARY

3.1 Definition of Terms

Commanded fin Input variable, fin deflection demanded from the

deflection autopilot system

External hinge Input variable, hinge moment generated by the
moment aerodynamic fin forces and moments
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Device locked Logical input variable, if true, the actuator
is locked in its initial position

Actual fin de- Output and state variable, actual angular posi-

flection tion of the shaft on which the fin is mounted

Motor speed Output and state variable, angular speed of the
shaft of the electrical motor

Commanded motor State variable, output variable of the actuator
current controller

Actual motor Output and state variable, actual motor current
current generated in response to demand from actuator

controller

Motor feeding Output variable, voltage across the terminals of
voltage the electrical actuator motor



3.2 Conceptual Moeel Showing Major Input/Output Variables

Actual fin deflections, motor speed, motor voltage and motor current are
computed as a function of commanded values for desired fin deflections,
the moments actually acting on the hinges, and a logical variable which

determines whether the device is 7ocked or uniocked. Fig I shows the

basic functions which model ELACT3 performs.

commanded fin deflection actual fin deflection

hinge moment ELACT3 motor speed

locked/unlocked irctor current

Fig B-I Basic Model Functions

3.3 Summary Description of Model Application

'oOel FLACT3 cor be used in the scope of missile models if a model
of the aerodynamic hinge moments acting on the fins is available.
Interded appl4cations are-

- Autopilot studies

- System simulation studies - if hinge moments have a sensible

effect on system performance or if an estimate of overall power
consumption during a mission hias to be obtained

- Actuator design studies for verification of basic design

parameters

- Usage as a model of a typical electrical actuator system for

other app]ications where load moments are Important

3.4 Nature of Nodel

The model is continuous, i.e., it is described by three ordinary
differential equations. The model is basically of deterministic nature
in the sense that it does not contain any internal sources of noise.



b. FUNCTIONAL, MODEL

4.1 Description of Functional Hodel

Since the influence of external hinge moments is taken into
account, a physically functional model is necessary. Therefore, the
model is composed of the actuator ccntroller, the electrical power

amplifier, the electrical shunt motor with gear drive, and pickups for
motor speed and fin position. The dynamics of the power amplifier as
well as the dynamics and higher order effects of the rotor circuit are
neglected. The overall dynamics for small signals corresponds to a
third order transfer function. Nonlinear behaviour is the result of
limits for motor current, motor voltage, and motor speed, which are
represented in the model.

4.2 Functional block Diagram and Major Variables

The model is composed of the following functional blocks:

- Actuator controller

- Electrical power amplifier

- Flectrical motor with associated gear drive

- Sensors for fin position and motor speed

The relationship between these function of blocks are deplcted In
the following functional block diagram:

locked/ hinge actual

4.3 Defnitoand Cfmnso ajrVralsin nctionaBlu 
Diagramd

S m en controller 3.plfier gear sensors

deflection onr

moor mtor motor1
voltage Current speed

Fig B-2 Functional Block Diagraw

4.3 Definition and Comments on Major Varia , les In Functional

Block Diagram

Same as in Paragraph 3.1



4.4 Critical Variables for Model Validation

- Actual fin deflection

- Motor speed

- Actual motor current

5. MODEL APPLICATION

5.1 Domain of Intended Application of Simulation Model

The model can be used without special precautions within the domain
defined by its basic design parameters (max fin deflection, max
defletion rate, max hinge moments, bandwidth, etc.).

5.? Major Assumptions Used in Developing the Model

Ir view of the real actuator system and of the intended
applications, the model represents the following features:

- Third order dynamics

- Motor current

- Friction and hinge moments

- Limitations in actual fin deflection, motor speed and motor

current

- Iligid body dynamics

5.3 tajor Known limitations in Domain of Application

If the design of the real actuator system is sound, the neglected
effects such as backlash, gear efficiency, elasticity of mechanical
parts, motor commutation and cogging effects, deterioration of magnetic
flux and the dynamics of the power amplifier should not have a sensible

effect on the static and cyoamic behavior of the device and therefore

also on the model.

5.11 Non-obvious Exclusions from Model

Not Identified in present model.

5.5 Inputs to and Outputs from Model

5.5.1 Models Providing Inputs

The inputs to model FLACT3 have to be provided by:

- An autopilot model which calculates desired fin
deflections
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A model of hinge moments which computes the aerodynamics
load moments acting on the actuator hinge as a function
of fin incidence.

5.5.2 Models Using Outputs

The principal output of model ELACT3 is actual fin deflection.
This output provides data to compute aerodynamic forces and moments
acting on the missile body and on the actuator hinges. Additional
outputs can be used to monitor actuator performance. The output motor
current in conjunction with a power supply model can be used to
determine power consumption over missile flight time.

6. MODEL VALIDATION PHILOSOPHY

6.1 Criterion for Validation

Criterion for validation requires that the model response and the
response of the real actuator system be matching reasonably well from an
engineering point of view using the same kind of system excitation and
observing the variables identified in Paragraph 4.4.

6.2 Methodology for Validation

Validation was performed against data obtained from bench test with
the real actuation system. A step function for "commanded fin
deflection" was applied as an input test function. The system response

with respect to the critical variables identified in Paragraph 4.4 were
recorded on a multi-channel recorder. The corresponding test was
performed with the model and the critical variables were recorded on
plots using the same format and scale factors as on the multi-channel
recorder. Comparison was performed by visual overlay of the two system
responses. Quality of coincidence was judged by engineers experienced
in actuator design and in missile modelling. No formal measures for
goodness of fit have been used.

7. SUMMARY COMMENTS ON SIMULATION IMPIFMENTATION

7.1 Type Computer and Operating System

The Model is Implemented digitally on an CDC 6600 Computer under
NDS 1.4, level 552.

7.2 Language

Standard ANSI-FORTRAN IV.

8. STUDIES OR AREAS WHERE MODEL HAS BEEN USED

8.1 Specific Studies where Model was used

The model was used for the purpose mentioned in Paragraph 2.2.

-Im



1.2 FE-lated Model Background

8.2.1 Similar Models

Model ELACT3 is a member of a familv of several actuator models:

- ACTI: First order general actuator nodel with position

and speed limits.

- ACT?: Second order general actuator model with limits
for acceleration, speed and position.

- ELACT3: Third order electromechanical actuator model,
taking limits and hinge moments into account.

- ELACT4: Detailed model to be used in electrical

actuator design studies.

8.2.2 Model Structure

Model FLACT3 is a stripped version of model ELACT4 that used for
design of the actuator. The newly developed actuator system was
acceptance tested against results obtained with ELACT4. In ELACT3, only
those features are represented that are necessary to meet the objectives

mentioned In Paragraph 2.1. The choice has been made by engineers
experienced in actuator design and In missile system modelling.

P.2.3 Model Data

The parameters and constants for the model have been taken from

model FLACTh and have been validated by measurements on the actual
system during Its development.

9. CONIWEYTS ON MODPE, PERFORMANCE

9.1 Summary of Validation Results

Since no device was available which would be capable to apply a
defined moment on the hinge of the real system under dynamic conditions,

validation was possible only without external load.

For the tests performed, coincidence of the variables "fin
deflection" and "motor speed" was very good whereas the motor current of
the model matched the current of the real system reasonably well onlv
during acceleration and deceleration phases. A large ripple, which is
induced in the real system by motor effects such as cogging,
commutation, etc., does not exist fn the case of the model since motor

effects are not Included.

The way mechanical friction was -epresented in the model was not
reasonable. Vhen the model approached a steady state, a limit cycle
was generated; the characteristics of which are very sensitive to the

implementation parameters (e.g., integration step size).
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9.2 CLIMB Level Achieved

CLIIB Level 3 has been achieved.

9.3 General Conclusions on Model Performance

ELACT3 is a reasonable model of a third order actuation system.
The static and dynamic performances are well represented. The represen-
tation of the motor current in the model allows the correct represen-
tation of degradation in dynamic performance when the current reaches
its limitation bounds as well as to obtain an estimate of electrical
power consumption, whereas, the representation of motor current with
respect to time is poor because of the neglected high creer effects.
Caution has to be observed when using the mechanical friction feature of
the model, as explained in Paragraph 9.1.

When the model is used within an autopilot loop, steady state
conditions will practically never be reached and the limit cycle will
probably never be excited. Therefore, if one wishes to derive an
estimate of power consumption of the actuation system, the model could
be used taking friction into account if the necessary caution is
observed.

10. APPLICABLF DOCUMENTS

FLACT4, Documentation of the Design Model of an

Electrical Actuation System.

CLIMB LEVEL 2 EXAMPLE

1. SYSTFM MODEL ELEMENTS

1.1 General Description of System Model

The model is composed of the following functional blocks:

- Actuator controller

- Electrical power amplifier

- Electrical motor with associated gear drive

- Sensors for fin position and motor speed

These can readily be identified In Fig B-3.

1.2 Block Diagram of System Model

Represented by Fig B-3

1.3 Major Subsystems
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1.3.1 Actuator Controller

The actuator controller is a PID-controller, the three coefficients
of which are calculated from the denominator polynomial of the desired
third order overall transfer function.

1.3.2 Power Amplifier

The power amplifier provides a current to the motor that is

commanded by the actuator controller. Neglecting dynamic effects, It Is
represented by its steady state behavior taking into account limits for
motor current and voltage.

1.3.3 Flectrical Moter/Gear/Load

The model of this block uses the basic laws of a dc shunt motor,

neglecting the dynamics of the rotor circuit. The gear is represented

by Its ratio and its coefficient for friction.

1.3.4 Sensors

The pickups for motor speed and fin deflection are modelled by

error terms for set-off and scaling errors.

1.4 Yodel Interface

1.4.1 Model Inputs

Mnemonic Type Symbol Dimension Meaning
Name

LL LOGICAL T. - Device locked if true

DT REAL - s Communication interval

STC REAL 0 rad Commanded fin deflection
c

MH REAL mH Nm Hinge moment

Tab 1 . Inputs to ELACT3



1.4.? Model Outputs

Mnemonic Type Symbol Dimension Meaning

Manemnc TpName

SI REAL a rad Fin position

DSI REAL M rad/s Motor speed

IC REAL i A Commanded motor current

TM REAL iM  A Actual motor current

UC REAL u V Motor feeding voltageC

Tab 2 Outputs from ELACT3

1.5 Assumptions and Justifications Used for System Model

See Paragraph 10, B-1.

1.6 Mathematical Model

In the following paragraphs, the mathematical model of the

electromecharical actuation system will be described. The icdel
variables are listed in Tab 3, the model constants and parameters are
listed In Tab 4, and the detailed block diagram of the system is shown

in Fig B-3.

The following conventions have been used for notation:

- Constants and parameters: Capital letters

- Variables: Small letters

- Subscript "M" stands for "Motor"

- Subscript "m" stands for "Measured value"

- Subscript "c" stands for "Commanded value"

- "V" indicates "value of limitation for varlabl v"
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Mnemonic Type Symbol Dimen- Meaning Remarks

Name slon

IC REAL i A Commanded motor State variable
current

SIC REAL oc  rad Commanded fin Input variable
deflectioo

SIm REAL a rad Measured fin
deflection

DSI REAL a rad/s Motor speed State/output var.

DSIM REAL M rad/s Measured motor

m speed

TM REAL iM A Actual motor State/output var.

UC REAL u c  V Motor feeding Output variable

voltage

UF REAL uF V Motor EFt

ST REAL a rad Actual fin de- State/output vat.

flection

LL LOGICAL L logical "Device locked" Input variable

M REAL mM Nm Motor moment

?M REAL m H  Um External hinge Input variable

moment

Tab 3. Model Variables
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Mnemonic Type Symbol Dimen- Value Toler- Defini- Meaning
Name sion ance tion by

OM REAL W 1/s 185 - DATA System design parameter

B REAL b - 3.1 - DATA System design parameter

C REAL c - 4.0 - DATA System design parameter

KG REAL K - 96 - DATA Gear ratio

KI REAL K As b ,!/CM  ± 6Y DATA Controller parameter

K2 REAL K2  s c/(b w) ± 67 DATA Controller parameter

K3 REAL K3  I/s (s/b ± 67 DATA Controller parameter

K4 REAL K4  - 1 ± 2% DATA 6-sensor, scaling error

K5 REAL K5  - 1 ± 0.5% DATA a-sensor, scaling error

DELSI REAL Ac rad 0 ± 0.006 DATA a-sensor, set off error

SDMAX REAL aM  rad/s 288 ± 5% DATA Controller, limit

SIMAX REAL rad/s 0.349 ± 37 DATA Limit of commanded fin
deflection

RM REAL R P 5.4 5.4..6.8 DATA Motor resistance

CE REAL CE  Vs/rad 0.0707 ± 10% DATA Coefficient of EMF

CM RFAL CM  Nm/A 0.0707 ± 107 DATA Motor constant

1MG REAL JT Nms
2  

10
- 5  

± 10% DATA Moment of inertia

iCMAY REAL ^ A 6.76 ± 5% DATA Limit commanded motorc
current

I'CMAX REAL 1 V 56 DATA Power amplifier max.

output voltage

CR REAL C R  0.2 ± 507 DATA Coefficient of friction

MR PEAl, MR  Nm 0.02 ± 50% DATA Friction moment

MHMAX REAL Nm C M KC DATA Max. hinge moment

Tab 4. Model Parameters and Constants
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1.6.1 Actuator Controller

The differential equation for the PID-controller, taking the gear
ratio KC into account, is as follows:

(i) =K 1 I K K3 • K (o -o) - K I ME -KI "K 2. m

with the limits

VK3 '"C (c c - am) 1'<o 'M

c < I

if = true (device locked): iC 0.

In the real system c is generated by a differentiating network

(Ref Fig B-3). For the mrosel, aMm is generated from the equilibrium of
moments, Ref Paragraph 1.6.3. iMm Is formed by multiplication with K4 ,
Ref Paragraph 1.6.4.

1.6.1.1 Computation of Controller Parameters

The overall transfer function of the actuator system, neglecting

the dynamics of the motor current circuit, is:

1a s) = . o (s)

3 K? 
2 s

_ S + D -1 S +-4 ]

K 1 K 2C, K3  K3

Given the transfer function of the desired behavior of the actuator

system
I

Ks = c/(b s(s3+ c~s? + b ()+1

we get by comparison of coefficients:

Kl I b @ w 2 /

K 2 c c/(b )

K3 = w/b

J Is the total moment of inertia of the motor/gear/fin assembly,
defined at the motor side of the assembly. This way It is possible to

calculate the coefficients of the actuator controller, given the dynamic

design parameters w, b, c.
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1.6.? Power Amplifier

The task of the power amplifier is the transformation of the
commanded motor current, as computed bv the actuator controller, irto
real motor current. The bandwidth of the real device Is around 600 11
This is large compored with the bandwidth of the overall actuator svsfem
and can therefore certainly be neglected for the intended purpose of
this model.

The steady state equatlons of the power amplifier are.

1E = C " a 11

I c c i

if I,1I>u :c = c sign (Ic
iM = (uc UE)/RM

1.6.3 Motor/Cear/Load

Moment, generated by the motor:

mM = CM0 .M

Equilibrium of moments:

JcM I mM m L  CR. mL . sign (o) - R sign (,.)

m= mH/YG
7' a - M  dt +

= S(y / G)dt + oo

Tf LI = true (device locked): ;M = Mo 0

a = c = Aa

1.6.4 Sensors

The feedback values for the controller, motor speed and actual fin
deflection, are measured by a tacho generator and a potentiometer. The

tacho generator is represented by a scaling error:

Mm K it
oMm Y4 ! °M

The position pickup is represented by set-off and scaling error:

am = V 5 # a - AC
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2. IMPLEMENTATION DESCRIPTION

The model is implemented digitally as a single subroutine named
FLACT3, written in Standard ANSI FORTRAN IV.

2.1 List of Computer Variables

The computer variables, apart from temporary variables, are listed
in the following tables:

Input Variables Tab I
Output Variables lab 2

Model Variables Tab 3
Model Parameters and Constants Tab 4
Implementation Variables Tab 5
Implementation Parameters Tab 6

Mnemonic Type Definition by Meaning

LL LOGICAL input true = initialization
false = integration

identical to "device
locked"

IERR INTEGER condition within Error indicator
ELACT 3

IR INTEGER ELACT 3 Counter for integration
control

Tab 5.Implementation Variables

Mnemonic Type Definition by Meaning

DT REAL input Communication interval

DTRM REAl. ELACT3 Internal integration step

DTRMO REAL DATA Upper bound for integration

sten

IRM INTEGER ELACT3 Number of integration steps
per communication interval

TAB 6. Implementation Parameters
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2.2 Processing Methods

2.2.1 Function Allocation

The functions are performed as described in Paragraph 1.6. There
Is a clear correspondence between the implemented code and those

functions.

2.2.2 Integration Method

For integration of the differential equations, the Euler method
is used. Because of the dynamics of the modeled device, usually a
smaller integration step, DTRM, than the communication interval DT has
to be used. During Initilization, FLACT3 computes a suitable

integration step size, assuring that it is an integral fraction of the
communication interval not greater than DTRMO:

DTRM = DT/n < DTRMO

with n = suitable integer:

n = int rDT/DTRMO + 0.5]

At every call to FLACT3, n integration steps are performed. This
is controlled through the variable IR and parameter IRM (= n).

2.2.3 Model Parameters and Constants

Model parameters and constants are defined by DATA-statements
within ETACT3. They cannot be altered by calling the subroutine. There
is no stochastic variation of model parameters implemented.

2.2.4 Initialization

The first call to ELACT3 must be an Initialization call. This is
performed by calling it with the input variable LL = TRUE . State
variables are set to initial conditions, the controller coefficients are

computed as well as the Internal integration step size, and the error
indicator IERR is reset. Initialization calls can be repeated.

2.2.5 Error Detection

The error indication is set to I If the external hinge moment
exceeds 807 of the maximum hinge moment defined as

MR = T CM .K

2.3 Required Program Library Elements

Apart from standard run time, librarv routine ELACT3 does not call

any subroutine.

2.4 Required Computer Resources
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2.4.1 Required Peripheral Equipment and Data Files

The program does not need any peripheral equipment or data files.

2.4.2 Memory Requirements

Subroutine ELACT3 occupies 152 60-bit-words of main memory on CDC
6600.

2.4.3 Running Time

The execution time per call to ELACT3 with 5 internal integration
steps on a CDC 66000 Computer is 480 sec.

3. SYSTEM MODEL VERIFICATION

3.1 Criteria for Model Verification

The following criteria have been used for model verification:

(a) Model responses to step input functions should be as predicted
by theory and as expected due to an expert's understanding of
the system (plausibility).

(b) Insensitivity of model behavior with respect to digital
integration parameters.

3.? Methods Used for Model Verification

The methodology used for model verification is summarized in Tab 7.

3.2.1 Dynamic Model Behavior Test

Objective was to assure that the model behaves dynamically as

expected from theory and from an experts' experience.

3.2.2 Sensitivity with Respect to Implementation Parameters

Objective was to assure that model behavior does not depend on

implementation particularities and parameters.

3.3 Data Bases used for Verification

3.3.1 Dynamics Model Behavior Tests

3.3.1.1 Reference Data Base

3.3.1.1.1 Model Behavior without Mechanical Friction

Neglecting mechanical friction (M = CR = 0), the following tests

have been performed.
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Test A: Operation in nonlinear domain.
Rectangular Input, c ± 0.26 rad, no external load,
change in o every 460 ms.
The transiton slope of o is required to correspond to
maximum motor speed divided by gear ratio:

Mmax = 288/96 = 3 rad/sec

Therefore, neglecting the dynamics of the systei', the
transition time of a between steady state values should
be approximately

t = o/6 Max = 0.52/3 = 0.173 sec

The motor current I is required to overcome mechanical
inertia during the acceleration/deceleration phases. As
soon as motor speed AM reaches Its saturation value of
288 rad/sec or the vaTue zero, motor current i. has to go
to zero.

Test B: Operation at the limits of linearity.
Rectanpular Input, a = ± 0.07 rad, no external load,
change in q every 460 Ms.

Test C: Operation in the linear domain.
Rectangular input, a = ± 0.017 rad, no external loa,
change in a every 460 Ms.

The required model response can be calculated
analyticallv, using the desired transfer function (see
Paragraph 1.4.1.1):

(s) -- ------------ C (s)

+ b( + s + c

with parameters w, b, c, according to Tab 4.

For this small step input, no one of the limitation values Is
reached and the implemented model should reproduce the analytical
solution with high accuracy.

Test D: Nonlinear operation with external hinge moment. Rectangular
input, ac = + 0.26 rad, m,, = -15 Nm, change in oc every
400 ms.

As long as neither currents nor voltages reach their
saturation values, the time histories of a and should be
the same as with Test A. Also iM should show theMbebavior
as in Test A, but with a constant offset value which is
necessary to compensate for the external load. This offset
value should be

-j.



-mu 15
i -----C K ----------- = 2.21 A
M CM KG 0.0707 0 96

3.3.1.1.2 Model Behavior Including Mechanical Function

Above Tests A through D have to be repeated with mechanical
friction, i.e., MR = 0.02 Nm and C = 0.2. In test cases without
external load, the behavior of o and I. should be identical to the
results without friction. During non-steady states, motor current
should be increased by

MR 0.02

All, -- , sign (M ------- sign (6 M) = 0.28 * sign (5M)
Cm  0.0707

In test case D (with eyternal load) the motor current is increased bh

MR + mH . C /K 0.02+15 • 0.2/96

Aim  ---- sign ('oP) -------------- sign (4 )=0. 725 . sign (o
C M  0.0707 1

3.3.1.2 Model Generated Data Base

The integration step size used was I ms. The data is recorded in
form of plots in a format similar to the one obtained from a multi-
channel recorder. The first line shows the input variable r , the
following ones the critical variables defined in Section 10, B-I.

3.3.1.2.] Model Behavior without Mechanical Friction

Test A: Operation in nonlinear domain, Fig B-4 (At end of CLIMB
Level 2).

Test B: Operation at the limits of linearity, Fig B-5.

Test C: Operation in the linear domain, Fig B-6.

Test D: Nonlinear Operation with external hinge moments, Fig B-7.

3.3.1.2.2 Model Behavior Including Mechanical Friction

Test A: Operation In the nonlinear domain, including mechanical

frictioT,, !.e., m 00 = O.2 and C, = 0.0?, Fig B-P.

3.3.2 Fensitlvitv with Respect to Tmplementation Pprnmeters

Using Test C as tesr case, the sensitivity of model response
with respect to integration step si7e DTRI! has been Investigated.
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3.3.2.1 Reference Data Base

Test C: Operation in the linear domain, without mechanical
friction, analytical solution, Fig B-9.

3.3.2.2 Model Generated Data Base

Test C: Operation in the linear domain, without mechanical

friction, results of runs with DTRM = 0.0005 s, 0.001 s
and 0.002 s, Fig B-10.

Test C: As above, but with DTRM = 0.002 s, 0.003 s and 0.004 s,
Fig B-Il.

Using the same test case, the model, including mechanical friction
was exercised. Fig B-12 shows the results in the case of DTR4 = 0.001
s, Fig B-13 with DTPM = 0.002 s.

3.4 Results from Model Verification Efforts

3.4.1 Dynamic Model Behavior Tests

Criterion was reasonably coincidence between the two data bases
from an engineering expert's viewpoint. Plot overlays have been used,
but no quantitative measures for goodness of fit were used. In
addition, the model generated data did not expose any anomalies or
unexplainable effects.

The results of the comparison are summarized in the following:

3.4.1.1 Model Behavior Without Mechanical Friction

Test A: Operation in nonlinear domain, Fig B-4.
The transition slope of , as retrieved from the plot,

is:

;Mmax = 0.52/0.172 = 3.02 rad/sec

which matches well the theoretical value of 3.0 rad/s.
The steady state value for t in the plot is 290 rad/s,

as compared with theoretical~y 288 rad/s. Motor current
IM behaves as expected, It is proportional to M, The
magnitude cannot easily be verified at this stage.

Test P: Operation at the limits of linearity, FIF B-5. M is

just reaching its saturation value. Model performance
does not show any anomalies or unexplainable effects.

Test C: Operation in the linear domain, comparison with
analvtical solution of Fig B-9.

Model behavior, Fig B-6, matches very well the analytical

solution. The model shows a little, unslgnlficantly
higher overshoot. Notor current cannot be compared since
it has not been calculated in the case of the analytical
solution.



Test D: Nonlinear operation with external hinge moments, Fig B-7.
The curves arc identic.1 with these of Fig B-4 (Test A)
with the only difference that 1 shows an offset of
2.25 A in order te compensate for the external hinge
momen t :

mH i C = 2.25 0.0707 • 96 = 15.27 Nm

as compared with the applied value of 15.0 Nm.

As long as the motor current iM is not saturated,
external loads do not have any'effect on the dynamic

behavior of the actuation syster.

3.A .I.9 Model Behavior Including Mechanical Friction

Test A: Operation in the nonlinear domain, Fig B-8. Motor
current is now required not just during the acceleration/
deceleration phases, but in to overcome the friction

moment M .

The current during constant motor speed, is 0.3 A. This
corresponds to a motor moment of

mM = Crl . IM = 0.0707 , 0.3 = 0.02121 Nm

which matches very well the supposed value of MR = 0.020.
The transition slope, is practically the same as in the
case without friction.

However, when the system is approaching a steady state,

i.e., 0, a i1mit cycle is generated, having
characteristics that are very sensitive to the particular

implementation. In the present case of a digital
Implementation, frequency and amplitude of the limit

cycle are highly dependent on the particular integration
step size chosen. This means that the proposed model of

mechanical friction is not reasonable.

Since the influence of friction on the dynamic behavior
of the actuator system is negligible, .t is recoirmended

that the model be operated with M = C = 0.
When the model is used within an autopilot loop, stead,

states will practically never be reached and the limit
cycle will probably never be excited. Therefore, if one
wishes to derive an estimate of power consumption of the
actuator system, the model could he ufied by taking
friction into account.

3.4.2 Sensitivity with Respect to Integration Step Size

The criterion was that the model response should be reasonably
insensitive with respect to step size,PTRM, as Judged by an expert
engineer.



fig B-10 shows that there is no significant difference between the
responses with DTRP! = 0.0005 s and DTRV = 0.001 s, whereas a clcarlv
visible divergence can be stated lot DTRM = 0.002 s.

Fig B-1l shows tht already DTRNI = 0.003 s cuses the model to
become unstable.

Therefore, the value DTRI' = 0.001 s appears to be a reasonable
choice.

Using the same test case, tie model including mechaulcal friction
was exercised. Fig B-12 shows the limit cycle in the case of DTRM =
0.O0 s. Fig B-13 shows the results obtained with DTPY = 0.00? s. It
demonstrates the sensitivity of the clnracteristics of the l]nit cycle
with respect to integration step size. This confirms the ctatment wtlade
in Paragraph 2.3.2.2 about the questionable applicability of the model
including mechanical friction terms.

4. VAliDATION OF SYSTEM MODFL'S STOCHASTIC COMPONENTS

The present model wa.z basically a deterministic nature in the sense
that it does not contain ai:y internal sources of noise. 7n the real
svtm, most of the parameters describing the model are subject to
randcu, variations because of component tolerance, ref Tab 4. This could
be taken into account in the model by random variation of relevant
parametprs prior to each model run. However, this feature has not been
implemented In the present model.

5. VALIDATION ACAINST OTHER EXISTING MODELS

No Validation against other models have been executed.

6. SUBSYSTEM CIIARACTFPIZATION AND BRIEF DFSCPIPTION OF SUBSYSTEM

MODFLS

Not applicable.

7. BFNCIIMARK TEST CASE

7.] Description of Benchmark Test Cases

The test cases used for verification of the dynamic behavior of the
model as described in Paragraph 3.?.?.] should be used as benchmark test
cases.

7.2 Input Data

Input is a rectangular variation of the variable c (SIC) as
described In Paragraph 1.4.1. c

7.3 Output Data

The output data is recorded In Figs B-4 through B-S, as described
In Paragraph 1.4.2. For the benchmark tests, the data base described In
Paragraph 1.6 becomes the reference data base.
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7.4 Criteria for Acceptability

Same as for verification tests, described in Paragraph 3.

8. COMPUTER PROGRAM

8.1 User Instructions

The model Is implemented as a single subroutine called FLACT3. Its

calling sequence can readily be inferred from the listing in the

appendix.

CAUTION: The contents of the state variables SI, DS], IC must not be
altered between calls!

For initiatization see Paragraph 2.2.4 and for error detection see
Paragraph 2.2.5.

8.2 Computer Listings

The complete source listing is not included.

9. PROGRAM VERIFICATION

9.1 Criteria for Verification

The following criteria have been used for program verification:

(a) Correct Implementation of the mathematical model of

Paragraph 1.6.

(b) Program code in compliance with Programming Standards.

(c) Portability of the program code.

9.2 Methods used for Program Verification

The methodology used for model verification is summarized in Tab 8.

Program verification has been performed by computer code analysis.

Objective was to assure that the model has been correctly

translated into portable computer code.

Three types of analyses have been performed:

(a) Source Code Inspection

(b) Inspection of Cross Reference Listing

(c) Source Code Compilation in "ANSI-Mode."
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9.3 Data Bases used for Program Verification

9.3.1 Source Code Inspection

Model Generated Pata Base: Computer Listing

Reference Data Base: Description of the mathematical model of

Paragraph 1.6 plus Programming Standards, Paragraph 10, B-3.

9.3.2 Inspection of Cro R Reference Listing

Model Generated Pata Base: Computer Listing

Reference Data Base: Requirements List of Paragraph 10, B-5.

9.3.3 Source Code Compilation in "ANSI-Mode"

Model Generated Data Base: Diagnostic messages by compilation run
in "ANSI-Trode", Section 10, B-6.

Reference Data Base: AN5T-FORTRAN Standard as implemented in the
compiler of Section 10, B-6.

9.4 Results from Program Verification Efforts

9.4.1 Source Code Inspection

Formal source code inspection was performed by the Ouality
Assurance Dept of MBB-UA. Crite, ion required the compliance of tile
computer listing with the mathematical model as described in Paragraph

1.6 as well as with the Programming Standards of Paragraph 10, B-3.
This criterion was fulfilled.

9.4.2 Inspection of the Cross Reference Listing

The cross reference listing, as generated by the compiler, was
inspected by the Ouality Assurance Dept of YBB. It fulfilled the
criterion to comply with the requirements list of Section 10, B-5.

9.4.3 Source Code Compilation in "ANSI-Mode"

Inspection of the source code by the Ouality Assurance Dept of 1IBB
has shown that it is In compliance with Paragraph 10, B-4. Compilation
of the program in the "ANSI"-mode did not result in any statement

flagged as "non-ANSI".

I0. APPLICABLF DOCUMENTS

B-I MODEL DOCUMENTATION, ELACT3
ELECTRICAL ACTUATION SYSTEM, CLIMB 2 Level I

April 1984



B-2 REPORT on ACCEPTANCE TESTS of the REAl. ACTUATOR

B-3 RichtlinleP zur Programmerstellurg (Programming Standards)

Internal MBB-Paper (in German)

B-4 Sandra Summers, Jean Fox
Writing Machine Independent FORTRAN
Software Vorld Vol 9, No 2

L-5 Checklist for Inspection of Cross Reference Listing, as Cenerated
by CDC-FORTRAN-Compilers.
Internal MBB-Paper

B-6 CDC-FORTRAN-EXTENDED VERSION 4
REFERENCE 1ANUAL 60997800

B-7 CDC-NOS VERSION I
REFERENCF MANUAL 60435400

CLITB LEVE, 3 FEYAPLE

1. REAL WORID SUBSYSTEM DATA

i.i identification of Subsystem

Electrical actuator system to drive the fins of the experimental
FHS missile system.

1.2 List of Variables for Which Measured Data Exist

Symbol Variable

Model Real System

ac TRC commanded fin deflection

C a R actual fin deflection

01T 0TM motor speed

1M IAM actual motor current



1.3 Data in Hard Copy Form

Attached to the end of CLIMB Level 3 in Figs P-14 through B-16.

2. EXPERJMENT ',' ENVIRONMENT

2.1 Scenario Used to Excite Subsystem

Laboratory bench tets have been performed with the real actuator
system by applying step inputs. Test conditions A through C as
identified Paragraph 8, B-9, have been used. Since no device was
available which was capable to apply a defined moment on the hinge under
dynamic conditions, Test 1) could not be made.

2.2 Description of Test Fxperiment

The test experiment is outlined in Fig P-17. The real actuator

system consists of two subasserhlies:

(a) The actuator electronics, including the actuator controller
plus the power amplifier

(b) The mechanical parts: DC-motor, gear and sensors

Three power supplies were u;sed to feed the actuator electronics:

- 2 each Hlewlett Packard HP 601?A,
providing power to the power amplifier.
Voltage setting: ± 56 V, precision t 0.5 V
Current limitation value: 10 A, precision t 1.0 A

- I Dual Power Supply Hewlett Packard HIP 6227 B,
providing power to the actuator controller.
Voltage setting: t 15 V, precision ± 0.5 V
Current limitation: 0.2 A, precision t 5 mA

The Input step function to the actuator system was provided by an
EXACT Function Cenerator, Type 255. The control setting was:

- Output: according to desired square wave amplitude, scale
factor 28.65 V/rad for actuator input

- Frequency: 4 l1z

- Waveform: rectangular

The variables were recorded on a Could Brush 4 Channel Recorder,
Type 2400.



Scale factors and settings were as follows:

- Paper speed: 250 mm/s

- Recordings:

Channel No Variable Scale Factor Channel Setting
f.s. = 25 lines

I aRC 0.5 V/deg = 28.65 V/rad 9.0 V = 0.312 rad

2 aRM 0.5 V/deg = 28.65 V/rad 9.0 V = 0.312 rad
-1

3TM 11.94 mV/rad s 6.0 V = 500 rad/s

4 iAM 1 V/A 6.25 V = 6.25 A

The points where above variables have been probed are depicted in
Fig B-18.

The recording format corresponds to the one used in the model
generated data base for verification, see Paragraph 8, B-0 , in order to
facilitate comparisons by plot overlays.

3. METHODS AND TECIIQUES USED IN COLECTING REAL, WORLD DATA

3.1 Data Collection Methods

Laboratory bench test with real actuator system, step input applied
using a square wave generator. Output recorded by a Brush 4-channel

recorder.

3.2 Frror Sources

3.2.1 Input Measurements

The apparent rise time on the irput step function is a function of

the recorder (bandwidth approx 50 Hz) and not of the generator. This
has been verified by using an electro iic scope. The accuracy of the
recordings is 0.7 percent of full scale.

3.2.2 Output Measurements

The same conditions apply.

3.3 Input/Output Data Analysis



3.3.1 Input Data

No analysis performed.

3.3.2 Output Data

No analysis performed.

3.4 Contact for Further Information on Measured Data

Person: Rudolf Merz
Address: Messerschmitt-Bolkow-Blohm GmbH

Abteilung AEI32
Postfach 801149
D-8000 Munchen 80
W-Germany

Phone No.: 089-60006536

4. VALIDATION APPROACH

4.1 Criteria for Validation

The model responses to various step inputs should match reasonably
well the real world data that has been generated under the same
conditions. This is to be judged by expert engineers that are
experienced in actuator design and missile system simulation. No
quantitative measures for goodness of fit have been used.

4.2 Validation Methods Used

The method of comparison of the two date bases was plot overlays
and experts' judgment.

4.3 Data Bases Used for Validation

4.3.1 Reference Data Base

Reference data base is the real world data as shown in Figs B-14
through B-16. The test cases correspond to the ones described in
Paragraph 8, B-9.

Test A: Operation in the nonlinear domain, Fig B-14.

Rectangular input a = t 0.26 rad, no external load.

The first channel shows the step input. The deviation from an
ideal step is due to the limited bandwidth of the recorder
(Roughly 50 Hz).

The second channel shows actual fin deflection. The slope of
the ramp is

Mmax = 0.52/0.168 = 3.095 rad/sec



The third channel records the output of the tacho generator

which serves as the sensor for motor speed. The measured
value shows a ripple which is due to the cogging effects of
the motor. The frequency of the ripple is:

10 periods/(21 mm: 200 irm/s) = 95 HIz,

Motor speed (revolutions per second) is:

3.095 * 96 = 297.1 rad/s = 47.3 Hz,

which matches ideally taking into account that the motor has 2
pairs of poles.

The fourth channel, motor current, is showing a large ripple
which is induced by motor effects such as cogging,
cormutation, etc., as explained above.

Test B: Operation at the limits of linearity, Fig B-15.

Rectangular input c = + 0.07 rad, no external load.c

Test C: Operation in the linear domain, Fig B-16.

Rectangular input u = ± 0.017 rad, no external load.

4.3.2 Model Cenerated Data Base

The model generated data base used for validation is documented in
Paragraph 8, B-9.

A.4 Validation Results

Test A: Operation in the linear domain.

Model: See B-9, Paragraph S.
Real System: Fig B-14
The slope of the ramp ' ax differs by ?.57. The ripple on
top of the variabl e~ n Fig B-14 is not present in the case
of the model because fWe causing motor effects like
commutation, cogging, etc. are nor represented in the model.

In the fourth channel, motor current shows the greatest
difference, whereas, the dynamic behavior during the
acceleration/deceleration phases matches reasonably well. a
A large ripple that shows up is induced by motor effects such

as cogging, commutation, etc. that do not exist in the case of

the model since motor effects are not included.

Test B: Operation at the limits of linearity
Model: See B-9, Paragraph 8.

Real System: Fig B-15
As far as a and M are concerned, the model is showing a
somewhat higher overshoot. The correspondence of motor
currents is not very good due to the effects discussed above.



Test C: Operation in the ]inear domain
Mfodel: See B-9, Paragraph 8.
Real System: Fig B-16
Again, for c and & M the match is very good with the model
showirg a little higher overshoot.

A summary of validetion results has been given in Paragraph 8 of
P-8.

4.5 Model Changes Due to Validation Effort

None.

5. COMPUTERIZED EXCITATION METHODS USED

5.1 Excitation of Real World System

The experiment used is described in Paragraph 2. No computer was

involved.

5.2 Excitation of the Model

The model was executed by a main program calling subroutine ELACT3.
The different test cases A through C were inplemented by subsequent

manual changes.

6. USER INSTRUCTIONS FOR TEST SET UP

No special explanations necessary, obvious from description of test

set up.

7. BENCHMARK FOR TEST SET UP

7.1 Description of Benchmark Test Cases

The test cases used for the validation experiment as described in

Paragraph 2.1 and 4.3.1 should be used as benchmark test cases.

7.2 Initial Conditions for Test Set Up

Ref Paragraph 6. The EXACT Function Generator is set up to

generate square waves with a frequency of 4 Hz and various amplitudes
corresponding to the test cases A through C. Scale factor is

28.65 V/rad.

7.3 Results for Critical Variables

Ref Paragraph 4.3.1 and Figs B-]4 through B-16.

7.4 Criteria for Acceptability of Benchmark Results

Reasonable correspondence with data Figs B-.14 through B-16, judged

from an engineer's point of view.



Method of comparison: Plot overlays.

S. APPLICABLE DOCUMENTS

B-8 MODEL DOCUMENTATION, FLACT3, ELECTRICAL. ACTUATION SYSTEM, CLIMB
Level I
April 1984

B-9 dto., CLIMB Level 2
April 1984
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Fig B-15. Test B, Real System
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APPENDIX C

PROGRAM DEBUGGING IN ACSL

One of the more important features of the ACSL language is the
availability of tools that assist in pinpointing errors. The first
thing is to establish a frame of mind that believes In the existence of
errors. It is difficult, in general, for the average user who writes a
model definition to believe that there are any errors. Accept the fact

that all programs have at least one error and part of the joy of coming
up with a finished product will be in finding it.

As the program is written, prepare the first run for debugging.
Set the stop condition (TERMT) for the first run to a small value
(typically one communication interval will suffice) so that no time will
be wasted calculating the incorrect values. Use the 'D' option in the

translator so that the program will proceed to uncover as many errors as
possible.

The first run through the translator will produce syntax error

indications and probably error messages as well. The translator
analyzes each statement in turn and if an error occurs It will be
indicated. The way the error is indicated is to write out again the
statement in error, including any continuations, with a line of

asterisks (*) underneath to indicate the acceptable section. The
asterisk should stop just below where the error is located.

Example:

x = Y + (STN(Y.Y))

***SYNTAX ERROR***THE LINE IS LISTED WITH A POINTER TO THE ERROR

X = Y + (SIN(Y.Y))

** * *** ** ** *

which shows that the period (.) separating the two Y's is not allowed.
It should be an asterisk (*) to Indicate "multiply". Two points should

be noted when these errors are indicated. The first is that only the
first error in the statement will be indicated. If this error is
corrected, it may need a second (or third) run to uncover other problems
further into the statement. Mhen you make a correction, take a long
hard look at the rest of the statement. The second is that line listed
may not look like the input text if continuation cards are used. The

error listing gives the complete string to be analyzed after the

trailing blanks have been squeezed from the end of any continued cards.

1ext, check for misspelling - variables that should have been the
spme get keypunched wrongl.y or names that should have been changed,
overlooked. To check these, look at the symbol cross-reference tables
listed at the end of the translator output. Any variables listed under
'VARIABLES NOT SPECIFIED 117 ANY BLOCK' will be misspellings, constants
you forgot to specify, or correct variables that had their name
misspelled at the statement defining them. They should have been
defined.
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Next, take note of any unsatisfied external references from the
load map. These will usually correspond to arrays you forgot to declare
in an ARRAY statement. Without this, they look just like functions.

The first run-time command should set up a debug action with
usually the first five or ten derivative evaluations sufficing. Include
the following card at run-time:

SET NDBUG = 10

Alternatively, an action can be scheduled that will ensure a debug
printout after every START until CLEARed:

ACTION 'VAR' = 0.0, 'VAL' = 10, 'LOC' = NDBUG

NOTE: While the system variable NDBUG is greater than zero, the
complete set of user variables is printed out and the the value of NDBUC
is reduced by one.

This output is probably the most important data to help in
debugging; the previous set of tools was merely to ensure that the
mechanics were correct - commas in the right place, spellings
consistent, etc. This debug output gives the actual numbers calculated
for every one of the state derivatives and intermediate variables. The
numbers should be examined carefully and checked for reasonableness
using knowledge of the system being modelled. It is a good idea to
start with initial conditions nonzero. If there are too many zero
values, the arithmetic calculations can conceal errors. For preference,
pick conditions so the derivatives all have a nonzero value which can be
checked. Check the values that are listed for the constants. Any that
have been preset in a CONSTANT statement and where the decimal point has
been left off will be listed as having a value of 0.0. This problem is
a very common error. Some arrays may be missing from this printout if
they happen to be longer than the integer contained in the system
variable MALPRN (Maximum Array Limit for Print Out). See system
variable summary for the default value.

Now try the first full run. Plan what significant output variables
will yield correct model operation. Specify these in an OUTPUT command,
increase the termination time and START.

It is at this point that the modeler's skill comes in to
rationalize the behavior of the simulation in terms of how the real word
system is expected to behave. About the only help that can be offered
is that once questionable areas have been uncovered, schedule debug
printouts to cover the area of interest so that as much information is
recorded as possible. Note that the debug output 'occurs after every
derivative evaluation. For Runge-Kutta fourth order integration, four
derivative evaluations are made for a time step (calculation Interval):
one at the beginning, two in the middle, and one at the end. The
independent variable will appear to advance in half-steps with two
derivative evaluations taking place each step. An extra evaluation will
take place prior to each communication interval or trip through the
DYNAMIC section.
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MEANING OF DEBUG PRINT OUT

The debug output is generated by going through the user dictionary,
which points to all variables in the user common block, and listing the
values of each one by one. The first fifteen variables are ACSL control
variables that are defined as follows:

(a) T - Real; Independent variable. May have been renamed in a
VARIABLE statement

(b) ZZTICG - Real; Initial condition on the Independent variable

(c) CINT - Real; Current communication interval. May have been
renamed by CINTERVAL

(d) ZZIFRR - Logical; Variable step error flag. May have been
renamed by ERRTAG

(e) ZZNBLK - Integer; Number of DERIVATIVE and DISCRETE blocks in
use

(f) ZZI - Integer; Distinguishes pre-initial (=0), START (=) and
CONTIN (=2)

(g) ZZST - Logical; Stop flag set by TERMT operator

(h) ZZFRFL - Logical, First flag set true at first derivative
evaluation of every step

(1) ZZICFL - Logical; Initial condition flag set true at first
derivative evaluation of every run - immediately after initial
conditions have been transferred to states

(j) ZZRNFL - Logical; Reinitialize flag set true by REINTT. Used
during Initialization (ZZICFL = .TRUE.) and then turned false

(k) ZZNS - Integer array of length number of DERIVATIVE blocks
giving number of state variables in each block

(1) MINT - Real array of length number of DERIVATIVE blocks givirg
minimum integration step size for each block. Name may be
changed by global NINTERVAL statement

(m) MAYT - Real array of length number of DERIVATIVE blocks giving
maximum integration step size for each block. Name may be
changed by global MAXTERVAT statement

(n) NSTP - Integer array of length number of D1RIVATIVF blocks
giving communication Interval divisor for each block. Name
may be changed by global NSTEPS statement

(o) IALG - Integer array of length number of DERIVATIVE blocks
giving Integration algorithm number to be used for each block.
Name may be changed by global ALGORITHM statement
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Next, in the debug printout comes the list of state variables in
DERIVATIVE block order and in alphabetical order within each block, with
their corresponding derivatives and iritial conditions on the same line.
If line width (see TCWPRN and HVDPRN) is sufficient (126) the corre-
sponding values of absolute error (XERR) and relative error (MERR) are
also listed on the same line. In general, the derivatives will all be
dummy variables (ZOnnnn form) except for those defined by the INTVC
integration operator.

All the algebraic variables follow the states in alphabetical
order. Any EOUIVALENCED variables are listed at the end. System
variable ZZSEED contains the random number seed variable which will
change (depends on machine type) with every call for a new random
number. ZZTLXP is a logical variable present in some machine versions
to request the reprieve/interrupt capability. If It is set false before
the first START, normal system dumps can be obtained if desired.

DEBUG

A call to this routine will produce a debug list of all variables,
excluding arrays greater than MALPRN (Maximum Array Limit for Print) on
both PRN and DIS units. The technique of setting NPPUG to a positive
integer; yields a debug list at the end of every derivative evaluation.
While useful as a checkout too. with large programs, this action can
produce an overwhelming amount of output. Selective output can now be
obtained by:

IF (logical condition) CALL DEBUG

included in the DERIVATIVF section. Including the statement

CALL DEBUG

in the DYNAMIC section produces the entire list at each communication
interval and is synonymous with asking for the OUTPUT of all variables.

Including

IF (DUMP) CALL DEBUG

in the TERMINAL section is a useful artifice since all final values are
displayed as well as the initial conditions for that run.
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